Symbolic computations: Dispersive soliton solutions for (3+1)-dimensional Boussinesq and Kadomtsev–Petviashvili dynamical equations and its applications

2019 ◽  
Vol 33 (29) ◽  
pp. 1950342 ◽  
Author(s):  
Aly R. Seadawy ◽  
Kalim U. Tariq ◽  
Jian-Guo Liu

In this paper, the auxiliary expansion equation method is applied to compute the analytical wave solutions for (3[Formula: see text]+[Formula: see text]1)-dimensional Boussinesq and Kadomtsev–Petviashvili (KP) equations. A simple transformation is carried out to reduce the set of nonlinear partial differential equations (NPDEs) into ODEs. These obtained results hold numerous traveling wave solutions that are of key importance in elucidating some physical circumstance.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Sekson Sirisubtawee ◽  
Sanoe Koonprasert

We apply the G′/G2-expansion method to construct exact solutions of three interesting problems in physics and nanobiosciences which are modeled by nonlinear partial differential equations (NPDEs). The problems to which we want to obtain exact solutions consist of the Benny-Luke equation, the equation of nanoionic currents along microtubules, and the generalized Hirota-Satsuma coupled KdV system. The obtained exact solutions of the problems via using the method are categorized into three types including trigonometric solutions, exponential solutions, and rational solutions. The applications of the method are simple, efficient, and reliable by means of using a symbolically computational package. Applying the proposed method to the problems, we have some innovative exact solutions which are different from the ones obtained using other methods employed previously.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Hasibun Naher ◽  
Farah Aini Abdullah ◽  
M. Ali Akbar

We construct the traveling wave solutions of the fifth-order Caudrey-Dodd-Gibbon (CDG) equation by the -expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, the trigonometric, and the rational functions. It is shown that the -expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document