Impacts of vehicle-to-infrastructure communication on traffic flows with mixed connected vehicles and human-driven vehicles

Author(s):  
Mengxiao Du ◽  
Shiyao Yang ◽  
Qun Chen

This paper explored the impacts of vehicle-to-infrastructure (V2I) communication on the mixed traffic flow consisting of connected vehicles (CVs) and human-driven vehicles (HVs). We developed a cellular automaton model for mixed flow at the signalized intersection. In addition to considering the motion characteristics of CVs and the influence of HVs on the motion behavior of CVs, the model also considered the influence of signal lights. CVs determine their velocities via V2I communication in order to pass the signal light with less delay and avoid stopping. Through simulations, we found that the presence, frequency and range of V2I communication all make a difference in the mixed flow. Also, 1-Hz communication reduces the number of vehicles within 300 m before the red light from 36 to 26, and the 10-Hz communication reduces one more; 1-Hz communication increases the number of accelerations, but when the frequency increases to 10 Hz, the number of accelerations decreases to the same value as without V2I communication, but the value of number of accelerations increases monotonously with the frequency; traffic delay decreases and capacity increases as the frequency increases. However, as the communication range increases, except that the number of accelerations first decreases and then increases, other traffic characteristics remain unchanged. The number of accelerations reaches a minimum at about 500 m.

Author(s):  
Alejandro Fernandez Canosa ◽  
Baisravan HomChaudhuri

This paper presents a computationally-efficient fuel-economic control strategy for a group of connected vehicles in urban roads. We assume the availability of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. Apart from fuel economy, the proposed higher-level controller also focuses on reducing red light idling, which improves traffic mobility and in turn improves vehicle emissions. The red light idling avoidance problem is formulated as a two-point boundary value problem and sampling-based approach is employed to evaluate a feasible solution in real-time. This leads to control solutions that can ensure avoidance of red light idling despite the number of vehicles in front of it. We have shown that sampling from a Gaussian distribution whose mean depends on the target velocity can improve fuel economy to a good extent. This higher-level control solution provides a good initial solution for any deterministic lower-level controller. Simulation results show the efficacy of the proposed method in terms of fuel economy and computational efficiency.


Author(s):  
Rodolfo I. Meneguette ◽  
Robson E. De Grande ◽  
Antonio A. F. Loureiro

2015 ◽  
Author(s):  
Blanca Peña ◽  
Erik P. ter Brake ◽  
Kyriakos Moschonas

A number of UK Round Three offshore wind farms are located relatively far from the coast making crew transfer to the sites time consuming, more prone to interruption by weather conditions and increasingly costly. In order to optimize the functionality of a permanent accommodation vessel, Houlder has developed a dedicated Accommodation and Maintenance Wind Farm vessel based on an oil & gas work-over vessel that has been successfully deployed for many years. The Accommodation and Maintenance (A&M) Wind Farm vessel is designed to provide an infield base for Marine Wind Farm operation. The A&M vessel is designed for high operability when it comes to crew access and performance of maintenance and repair of wind turbine components in its workshops. Also general comfort on board is of high regard. As such, the seakeeping behavior of the unit is of great importance. In this publication, the seakeeping behavior is presented on the basis of numerical simulations using 3D diffraction software. The first design iteration is driven by achieving high maneuverability and good motion characteristics for operational up-time and personnel comfort on board the vessel. Model test data of the original work-over vessel has been used to validate and calibrate the numerical simulations. On this basis, parametric studies can be performed to fine-tune a potential new hull form. In turn, this could reduce the number of required physical model tests providing a potential financial benefit and optimized delivery schedule. The vessel motion behavior was tested against the acceptability criteria and crew comfort guidelines of motion behavior for a North Sea environment.


2019 ◽  
Vol 13 (6) ◽  
pp. 983-990 ◽  
Author(s):  
Sherif Adeshina Busari ◽  
Muhammad Awais Khan ◽  
Kazi Mohammed Saidul Huq ◽  
Shahid Mumtaz ◽  
Jonathan Rodriguez

Sign in / Sign up

Export Citation Format

Share Document