Fretting wear behavior of thermal-oxidation on titanium alloy in air and vacuum atmosphere

Author(s):  
Liangliang Sheng ◽  
Xiangtao Deng ◽  
Hao Li ◽  
Yuxuan Ren ◽  
Guoqing Gou ◽  
...  

In this work, an in-situ XPS analysis test combined self-designed high precision fretting wear tester was carried out to study the fretting wear behavior and the resulting tribo-oxidation of thermal-oxidation film on Ti6Al4V titanium alloy under the varied working atmosphere. The fretting-induced tribo-oxidation under the air and vacuum ([Formula: see text] Pa) environment was analyzed and its response on the resulting fretting wear resistance and damage mechanism was discussed. Results show that the working environment plays a significant role in the formation of tribo-oxidation and then determining the fretting wear resistance. Thermal-oxidation film in the vacuum atmosphere shows a better fretting wear resistance than that in the air atmosphere for all fretting regimes, except for partial slip regime (PSR) where there is an equivalent fretting wear resistance. Compared with the substrate Ti6Al4V titanium alloy, the thermal-oxidation film in the vacuum atmosphere performs a good protection for titanium alloy, especially for slip regime (SR), but not applied for air atmosphere.

2020 ◽  
Vol 34 (13) ◽  
pp. 2050128
Author(s):  
Xuejiao Wei ◽  
Liangliang Sheng ◽  
Hao Li ◽  
Xiaojun Xu ◽  
Jinfang Peng ◽  
...  

A systematic experimental investigation was conducted to study the effect of oxygen environment of different pressure on the fretting wear behavior of Ti6Al4V titanium alloy. In order to well probe the real tribo-chemical state, in this work, an in-situ X-ray photoelectron spectroscopy (XPS) analysis test developed by a self-designed high precision fretting wear tester integrated with an XPS equipment was used. The tribo-oxidation formed at the different oxygen pressure and its effect on the fretting wear mechanism and the resulting fretting wear volume in the different fretting run regime were discussed. Results show that the oxygen environment of different pressure has significant influence on the wear resistance of titanium alloy depending on the fretting run regime. In the partial slip regime (PSR), different oxygen pressure plays a little influence on fretting wear behavior, while a significant influence for the mixed fretting regime (MFR) and slip regime (SR). The tribo-oxidations produced at the oxygen environment of different pressure for the different fretting run regimes are found to correlate well with the resulting fretting wear mechanism and the fretting wear resistance.


Wear ◽  
2017 ◽  
Vol 376-377 ◽  
pp. 670-679 ◽  
Author(s):  
Yan Zhou ◽  
Ming-xue Shen ◽  
Zhen-bing Cai ◽  
Jin-fang Peng ◽  
Min-hao Zhu

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5778
Author(s):  
Long Xin ◽  
Lanzheng Kang ◽  
Weiwei Bian ◽  
Mengyang Zhang ◽  
Qinglei Jiang ◽  
...  

The effect of displacement amplitude on fretting wear behavior and damage mechanisms of alloy 690 in air and nitrogen atmospheres was investigated in detail. The results showed that in air, the friction coefficient gradually increased with the increase in displacement amplitude which conformed to the universal law. In nitrogen, however, it had the highest point at the displacement amplitude of 60 μm due to very strong adhesion. Whether in air or nitrogen, the wear volume gradually increased with the increase in displacement amplitude. The wear volume in air was larger than that in nitrogen except at 30 μm. At 30 μm, the wear volume in air was slightly smaller. With an increase in displacement amplitude, a transformation of fretting running status between partial slip, mixed stick-slip, and final gross slip occurred along with the change of Ft-D curves from linear, to elliptic, to, finally, parallelogrammical. Correspondingly, the fretting regime changed from a partial slip regime to a mixed regime to a gross slip regime. With the increase in displacement amplitude, the transition from partial slip to gross slip in nitrogen was delayed as compared with in air due to the strong adhesion actuated by low oxygen content in a reducing environment. Whether in air or nitrogen, the competitive relation between fretting-induced fatigue and fretting-induced wear was prominent. The cracking velocity was more rapid than the wear. Fretting-induced fatigue dominated at 30 μm in air but at 30–60 μm in nitrogen. Fretting-induced wear won the competition at 45–90 μm in air but at 75–90 μm in nitrogen.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1538 ◽  
Author(s):  
Shengfa Zhu ◽  
Yanping Wu ◽  
Zhengyang Li ◽  
Liping Fang ◽  
Anyi Yin ◽  
...  

Depleted uranium has been widely applied in nuclear energy fields. However, its poor corrosion and wear resistance restrict its applications. A titanium/titanium nitride (Ti/TiN) multilayer film was deposited on a uranium surface to improve its fretting wear resistance. Fretting wear tests were carried out using a pin-on-disc configuration. The fretting behaviors of uranium and the Ti/TiN film were investigated under different normal loads. With the normal load increasing, the mode of fretting wear gradually transformed from slip region (SR) to mixed fretting region (MFR) and then to partial slip region (PSR). It is illustrated that the normal load had an obvious effect on the fretting wear behavior. The friction coefficients of both uranium and Ti/TiN multilayer film decreased with the increase of the normal load. In SR, the main wear mechanisms were delamination and abrasion for uncoated uranium, and delamination and oxidation for uranium coated with the Ti/TiN multilayer film. Photoelectron spectroscopy (XPS) analysis also showed that the Ti/TiN coating was oxidized and formed TiO2 during fretting wear. The wear depth of naked uranium was much greater than that of coated uranium, which demonstrated that the Ti/TiN multilayer film could effectively improve the wear properties of uranium.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Jianfei Wang ◽  
Weihai Xue ◽  
Siyang Gao ◽  
Bi Wu ◽  
Shu Li ◽  
...  

Abstract Several criteria for fretting wear behavior evaluation have been established since the proposal and establishment of the fretting loop concept. In this article, system deformation and system deformation ratio were defined. In addition, the fretting running conditions were distinguished from the evolution of system deformation with fretting cycles during fretting wear tests under different applied displacements and loads. In the gross slip regime, the system deformation was independent of the applied displacement and increased as the load increased, whereas in the partial slip regime, the system deformation was independent of the load and increased with the applied displacement. Furthermore, a linear relationship between the system deformation and the applied load in gross slip regime was found for the first time. Based on this linear relationship, the system deformation ratio can forecast the running regime with a given load and displacement. For the titanium alloy fretting pairs studied in this article, the fretting wear was found to run in the gross slip regime if the system deformation ratio was smaller than 0.9. Based on these observations, the system deformation ratio exhibited applicability in assisting the mechanical design of equipment suffering from fretting wear.


Author(s):  
Jianfei Wang ◽  
Deli Duan ◽  
Weihai Xue ◽  
Siyang Gao ◽  
Shu Li

Fretting wear between titanium alloy components in aero engine is prevailing in the blade dovetail, the blade crown, and the damping shoulders. In this study, the fretting wear behavior of Ti-6Al-4V alloy was investigated by changing the load and displacement under a high frequency (100 Hz). To simulate the actual working conditions in aero engines, both the ball and flat samples were Ti-6Al-4V alloy. It was found that as the load increased, or as the applied displacement decreased, the fretting regime changed from gross slip regime to partial slip regime. The coefficient of friction/traction at steady stage decreased as load increased. Wear scar morphologies varied with fretting running conditions. In gross slip regime, the central area was higher than the rest region of the wear scar. In the mixed slip regime, large material accumulation could be found at both ends of the reciprocating motion. In partial slip regime, a nearly original fretting sample surface was observed in the central area and wear occurred in the edge area. Furthermore, considering the wear of the paired samples, a method based on the fretting wear scar diameter was proposed to evaluate the fretting running conditions.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Mengjiao Wang ◽  
Yunxia Wang ◽  
Jianzhang Wang ◽  
Na Fan ◽  
Fengyuan Yan

Super duplex stainless steel (SDSS) has excellent mechanical properties and corrosion resistance. However, currently, there are few researches conducted on its fretting wear performance. This paper studies the influence of different heat treatment temperatures and medium environment on the fretting wear performance of SAF 2507 SDSS. Results show that the combined effect of the sigma phase and seawater lubrication can significantly improve the wear resistance of SAF 2507 SDSS. After treated with different heat treatment temperatures, different contents of sigma phases are precipitated out of SAF 2507 SDSS, which improves the wear resistance of the material to different degrees. In addition, the fretting wear performance of SAF 2507 SDSS also relates to the lubrication medium. In air, the friction and wear performance of SAF 2507 SDSS is poor, while in seawater, solution and corrosion products that acted as a lubricant dramatically improve the wear resistance of the material. Under the combined action of heat treatment and seawater lubrication medium, the friction coefficient and wear reduce by 70% and 91%, respectively.


Author(s):  
Dongbo Wei ◽  
Fengkun Li ◽  
Xiangfei Wei ◽  
Tomasz Liskiewicz ◽  
Krzysztof J Kubiak ◽  
...  

In this study, surface Cr-Nb alloying was realized on γ-TiAl using double glow plasma hollow cathode discharge technique. An inter-diffusion layer was generated under the surface, composed of Cr2Nb intermetallic compounds. After Cr-Nb alloying, the surface nanohardness of γ-TiAl increased from 5.65 to 11.61 GPa. The surface H/E and H3/E2 increased from 3.37 to 5.98 and from 0.64 to 4.15, respectively. Cr-Nb alloying and its effect on fretting wear were investigated. The surface treatment resulted in improved plastic deformation and fretting wear resistance of γ-TiAl. The fretting wear test showed that an average friction coefficient of γ-TiAl against Si3N4 ball was significantly decreased after Cr-Nb alloying. The fluctuation of friction coefficient during running-in stage was significantly improved. The friction behavior of both γ-TiAl before and after Cr-Nb alloying could be divided into distinctive stages including formation of debris, flaking, formation of crack, and delamination. It was observed that the high hardness, resistance to plastic deformation, and fatigue resistance of γ-TiAl after Cr-Nb alloying could inhibit the formation of debris and delamination during friction test. The fretting wear scar area and the maximum wear scar depth were decreased, indicating that the wear resistance of γ-TiAl has been greatly improved after Cr-Nb alloying. The results indicated that plasma surface Cr-Nb alloying is an effective way for improving the fretting wear resistance of γ-TiAl in aviation area.


Sign in / Sign up

Export Citation Format

Share Document