MECHANISM STUDY ON OXYGEN VACANCY INDUCED RESISTANCE SWITCHING IN Au/LaMnO3/SrNb0.01Ti0.99O3
Mechanism of resistance switching in heterostructure Au / LaMnO 3/ SrNb 0.01 Ti 0.99 O 3 was investigated. In Au / LaMnO 3/ SrNb 0.01 Ti 0.99 O 3 devices the LaMnO 3 films were fabricated under various oxygen pressures. The content of the oxygen vacancies has a significant impact on the resistance switching performance. We propose that the resistance switching characteristics of Au / LaMnO 3/ SrNb 0.01 Ti 0.99 O 3 arise from the modulation of the Au / LaMnO 3 Schottky barrier due to the change of the oxygen vacancy concentration at Au / LaMnO 3 interface under the external electric field. The effect of the oxygen vacancy concentration on the resistance switching is explained based on the self-consistent calculation. Both the experimental and numerical results confirm the important role of the oxygen vacancies in the resistance switching behavior.