Chaos to multiple mappings from a set-valued view

2020 ◽  
Vol 34 (11) ◽  
pp. 2050108
Author(s):  
Hongbo Zeng ◽  
Lidong Wang ◽  
Tao Sun

Let [Formula: see text] be a compact metric space and [Formula: see text] be an [Formula: see text]-tuple of continuous maps from [Formula: see text] to itself. In this paper, we investigate the multiple mappings dynamical system [Formula: see text] with Hausdorff metric Li–Yorke chaos, distributional chaos and distributional chaos in a sequence properties from a set-valued view. On the basis of this research, we draw main conclusions as follows: (i) two topological conjugacy dynamical systems to multiple mappings have simultaneously Hausdorff metric Li–Yorke chaos or distributional chaos. (ii) Hausdorff metric Li–Yorke [Formula: see text]-chaos is equivalent to Hausdorff metric distributional [Formula: see text]-chaos in a sequence. (iii) By giving two examples, we show that there is non-mutual implication between that the multiple mappings [Formula: see text] is Hausdorff metric Li–Yorke chaos and that each element [Formula: see text] [Formula: see text] in [Formula: see text] is Li–Yorke chaos. (iv) For the multiple mappings, weakly mixing implies the Hausdorff metric strongly Li–Yorke chaos and Hausdorff metric distributional chaos in a sequence.

2012 ◽  
Vol 204-208 ◽  
pp. 4776-4779
Author(s):  
Lin Huang ◽  
Huo Yun Wang ◽  
Hong Ying Wu

By a dynamical system we mean a compact metric space together with a continuous map . This article is devoted to study of invariant scrambled sets. A dynamical system is a periodically adsorbing system if there exists a fixed point and a periodic point such that and are dense in . We show that every topological weakly mixing and periodically adsorbing system contains an invariant and dense Mycielski scrambled set for some , where has no isolated points. A subset is a Myceilski set if it is a countable union of Cantor sets.


2010 ◽  
Vol 24 (14) ◽  
pp. 1595-1600 ◽  
Author(s):  
LIDONG WANG ◽  
YU'E YANG ◽  
ZHENYAN CHU ◽  
GONGFU LIAO

Let X be a separable metric space containing at least two points, and f:X→X be continuous. In this paper, we consider dynamical systems on X, and prove that topologically weakly mixing implies distributional chaos in a sequence.


2017 ◽  
Vol 27 (08) ◽  
pp. 1750119 ◽  
Author(s):  
Lidong Wang ◽  
Yingcui Zhao ◽  
Yuelin Gao ◽  
Heng Liu

Let [Formula: see text] be a compact metric space and [Formula: see text] be an [Formula: see text]-tuple of continuous selfmaps on [Formula: see text]. This paper investigates Hausdorff metric Li–Yorke chaos, distributional chaos and distributional chaos in a sequence from a set-valued view. On the basis of this research, we draw the main conclusions as follows: (i) If [Formula: see text] has a distributionally chaotic pair, especially [Formula: see text] is distributionally chaotic, the strongly nonwandering set [Formula: see text] contains at least two points. (ii) We give a sufficient condition for [Formula: see text] to be distributionally chaotic in a sequence and chaotic in the strong sense of Li–Yorke. Finally, an example to verify (ii) is given.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Yaoyao Lan ◽  
Qingguo Li ◽  
Chunlai Mu ◽  
Hua Huang

Letting(X,d)be a metric space,f:X→Xa continuous map, and(ℱ(X),D)the space of nonempty fuzzy compact subsets ofXwith the Hausdorff metric, one may study the dynamical properties of the Zadeh's extensionf̂:ℱ(X)→ℱ(X):u↦f̂u. In this paper, we present, as a response to the question proposed by Román-Flores and Chalco-Cano 2008, some chaotic relations betweenfandf̂. More specifically, we study the transitivity, weakly mixing, periodic density in system(X,f), and its connections with the same ones in its fuzzified system.


1993 ◽  
Vol 13 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Nobuo Aoki ◽  
Jun Tomiyama

AbstractFor a topological dynamical system Σ = (X, σ) where X is a compact metric space with a single homeomorphism σ, we determine the largest postliminal ideal of the transformation group C*-algebra A(Σ) as the intersection of all kernels of irreducible representations of A(Σ) induced from those recurrent points which are not periodic. The result implies characterizations of topological dynamical systems whose transformation group C*-algebras are anti-liminal and post-liminal, that is, of type 1.


2018 ◽  
Vol 32 (15) ◽  
pp. 1850166 ◽  
Author(s):  
Lixin Jiao ◽  
Lidong Wang ◽  
Fengquan Li ◽  
Heng Liu

Consider the surjective continuous map [Formula: see text]: [Formula: see text] defined on a compact metric space X. Let [Formula: see text] be the space of all non-empty compact subsets of X equipped with the Hausdorff metric and define [Formula: see text]: [Formula: see text] by [Formula: see text] for any [Formula: see text]. In this paper, we introduce several stronger versions of sensitivities, such as multi-sensitivity with respect to a vector, [Formula: see text]-sensitivity, strong multi-sensitivity. We obtain some basic properties of the concepts of these sensitivities and discuss the relationships with other sensitivities for continuous self-map on [0,[Formula: see text]1]. Some sufficient conditions for a dynamical system to be [Formula: see text]-sensitive are presented. Also, it is shown that the strong multi-sensitivity of f implies that [Formula: see text] is [Formula: see text]-sensitive. In turn, the [Formula: see text]-sensitivity of [Formula: see text] implies that [Formula: see text] is [Formula: see text]-sensitive. In particular, it is proved that if [Formula: see text] is a multi-transitive map with dense periodic sets, then f is [Formula: see text]-sensitive. Finally, we give a multi-sensitive example which is not [Formula: see text]-sensitive.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Heng Liu ◽  
Li Liao ◽  
Lidong Wang

Consider the surjective continuous mapf:X→X, whereXis a compact metric space. In this paper we give several stronger versions of sensitivity, such as thick sensitivity, syndetic sensitivity, thickly syndetic sensitivity, and strong sensitivity. We establish the following. (1) If(X,f)is minimal and sensitive, then(X,f)is syndetically sensitive. (2) Weak mixing implies thick sensitivity. (3) If(X,f)is minimal and weakly mixing, then it is thickly syndetically sensitive. (4) If(X,f)is a nonminimalM-system, then it is thickly syndetically sensitive. Devaney chaos implies thickly periodic sensitivity. (5) We give a syndetically sensitive system which is not thickly sensitive. (6) We give thickly syndetically sensitive examples but not cofinitely sensitive ones.


2016 ◽  
Vol 30 (02) ◽  
pp. 1550274 ◽  
Author(s):  
Lidong Wang ◽  
Jianhua Liang ◽  
Yiyi Wang ◽  
Xuelian Sun

Let [Formula: see text] be a compact metric space without isolated points and let [Formula: see text] be a continuous map. In this paper, if [Formula: see text] is a transitive dynamical system with a repelling periodic point, then [Formula: see text] is chaotic in the sense of Kato. In addition, if [Formula: see text] is weakly topologically mixing, then [Formula: see text] is chaotic in the strong sense of Kato.


2001 ◽  
Vol 2 (1) ◽  
pp. 51 ◽  
Author(s):  
Francisco Balibrea ◽  
J.S. Cánovas ◽  
A. Linero

<p>We present some results concerning the topological dynamics of antitriangular maps, F:X<sup>2</sup>→ X<sup>2 </sup>with the formvF(x,y)=(g(y),f(x)), where (X,d) is a compact metric space and f,g : X→ X are continuous maps. We make an special analysis in the case of X = [0,1].</p>


2021 ◽  
Vol 6 (10) ◽  
pp. 10495-10505
Author(s):  
Risong Li ◽  
◽  
Xiaofang Yang ◽  
Yongxi Jiang ◽  
Tianxiu Lu ◽  
...  

<abstract><p>As a stronger form of multi-sensitivity, the notion of ergodic multi-sensitivity (resp. strongly ergodically multi-sensitivity) is introduced. In particularly, it is proved that every topologically double ergodic continuous selfmap (resp. topologically double strongly ergodic selfmap) on a compact metric space is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive). And for any given integer $ m\geq 2 $, $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ f^{m} $. Also, it is shown that if $ f $ is a continuous surjection, then $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ \sigma_{f} $, where $ \sigma_{f} $ is the shift selfmap on the inverse limit space $ \lim\limits_{\leftarrow}(X, f) $. Moreover, it is proved that if $ f:X\rightarrow X $ (resp. $ g:Y\rightarrow Y $) is a map on a nontrivial metric space $ (X, d) $ (resp. $ (Y, d') $), and $ \pi $ is a semiopen factor map between $ (X, f) $ and $ (Y, g) $, then the ergodic multi-sensitivity (resp. the strongly ergodic multi-sensitivity) of $ g $ implies the same property of $ f $.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document