Spatial structural characteristics of a combustion flow field in an ethylene-fueled supersonic combustor with a rear-wall-expansion cavity

2020 ◽  
Vol 34 (18) ◽  
pp. 2050208
Author(s):  
Guang-Xin Li ◽  
Ming-Bo Sun ◽  
Yi-Xin Yang ◽  
Tai-Yu Wang ◽  
Yuan Liu

A hybrid large eddy simulation (LES)/assumed subgrid probability density function (PDF) closure model was employed to investigate the structural characteristics of the combustion flow field in an ethylene-fueled supersonic combustor with a rear-wall-expansion cavity. The wall pressure distribution from numerical simulation was compared with experimental data, and the numerical results are in good agreement with the experimental data. The spatial distribution characteristics of combustion heat release in the flow field are obtained from the simulation results. The reaction heat release zone is mainly distributed in the cavity. The cavity shear layer forms a concentrated reaction zone that produces a large amount of chemical heat release, thus further maintaining local stable combustion and forming a flame base. The front part of the cavity shear layer has the highest temperature in the whole flow field. There is still excess fuel reaching the cavity rear wall and producing a certain intensity of reaction. In addition, a dispersed small flame intermittently forms in the downstream near-wall region. The premixed combustion mode dominates the cavity recirculation zone, while the combustion in the downstream region evidently shows a non-premixed mode.

Author(s):  
C. P. Premchand ◽  
Manikandan Raghunathan ◽  
Midhun Raghunath ◽  
K. V. Reeja ◽  
R. I. Sujith ◽  
...  

Abstract The tonal sound production during thermoacoustic instability is detrimental to the components of gas turbine and rocket engines. Identifying the root cause and controlling this oscillatory instability would enable manufacturers to save in costs of power outages and maintenance. An optimal method is to identify the structures in the flow-field that are critical to tonal sound production and perform control measures to disrupt those “critical structures”. Passive control experiments were performed by injecting a secondary micro-jet of air onto the identified regions with critical structures in the flow-field of a bluff-body stabilized, dump, turbulent combustor. Simultaneous measurements such as unsteady pressure, velocity, local and global heat release rate fluctuations are acquired in the regime of thermoacoustic instability before and after control action. The tonal sound production in this combustor is accompanied by a periodic flapping of the shear layer present in the region between the dump plane (backward-facing step) and the leading edge of the bluff-body. We obtain the trajectory of Lagrangian saddle points that dictate the flow and flame dynamics in the shear layer during thermoacoustic instability accurately by computing Lagrangian Coherent Structures. Upon injecting a secondary micro-jet with a mass flow rate of only 4% of the primary flow, nearly 90% suppression in the amplitude of pressure fluctuations are observed. The suppression thus results in sound pressure levels comparable to those obtained during stable operation of the combustor. Using Morlet wavelet transform, we see that the coherence in the dominant frequency of pressure and heat release rate oscillations during thermoacoustic instability is affected by secondary injection. The disruption of saddle point trajectories breaks the positive feedback loop between pressure and heat release rate fluctuations resulting in the observed break of coherence. Wavelet transform of global heat release rate shows a redistribution of energy content from the dominant instability frequency (acoustic time scale) to other time scales.


Author(s):  
Zhibo Zhang ◽  
Hongtao Zheng ◽  
Honglei Yang ◽  
Ren Yang ◽  
Qian Liu ◽  
...  

Lean blowout (LBO) plays an important role in combustor performance. A new method named Feature-Section-criterion (FSC) for predicting the LBO of annular combustor has been put forward and expounded in this paper. A CFD software FLUENT has been used to simulate the combustion flow field of an annular combustor. The process of blowout and effects of flow split among swirlers and primary holes have been researched by using of FSC. The result shows that the predictions of FSC are in agreement with corresponding experimental data. So this method for predicting lean blowout is reliable and can be used for engineering applications.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1833 ◽  
Author(s):  
Javier Arturo Piedrahita Solorzano ◽  
Khalid Abu Mohammad Moinuddin ◽  
Svetlana Tretsiakova-McNally ◽  
Paul Joseph

In the present work, some materials that are commonly used in the construction industry were studied with regard to their thermal degradation characteristics and combustion attributes. These included façade materials for pre-fabricated houses, such as the layers of cross-laminated timber (CLT) and the inner core of aluminium composite panels (ACPs). The relevant investigations were carried out by employing thermo-gravimetric analysis (TGA) and pyrolysis combustion flow calorimetry (PCFC). The Arrhenius parameters and the associated calorimetric quantities, i.e., heat release rates, temperature to the peak heat release rate, heats of combustion, heat release capacities, and char yields, were also evaluated. These parameters showed that CLT is more fire retarded than the polymeric internal core of ACP façade materials. Furthermore, some valuable correlations among the various test quantities were found. For instance, a good correlation exists between the general profiles of the thermograms obtained through TGA runs and the heat release rate (HRR) traces from PCFC measurements. Depending on the nature of the materials, the char yields measured by PCFC can be 4–20 times higher than the ones obtained through TGA.


Author(s):  
Hesham El-Batsh ◽  
Hermann Haselbacher

Ash deposition on turbine blade surfaces is studied in this work using a particle deposition model. The model involves the three main processes: particle transport to the blade surface particle sticking at the surface and particle detachment from the surface. The model is used to investigate the effect of ash particle deposition on the flow field through turbine cascades. The surface velocity and the downstream total pressure coefficient are calculated for the clean and the fouled blade profiles and used in this investigation. The profile of the clean blade is chosen from the literature for which flow field measurements are available. The two dimensional compressible flow field is solved for the clean blade using the RNG k-ε turbulence model with the two layer zonal model for the near-wall region. The results are compared to the experimental data. The flow field is solved at the conditions expected in modern gas turbines. The deposition distribution on the blade surface is calculated during three periods of 12 operating hours each assuming inlet particle concentration as 100 ppmw. The fouled blade profile is predicted after each period. Then the flow field and deposition calculations are repeated to account for the time-dependent particle deposition. The flow field is calculated for the fouled blade after operating hours and investigated using the experimental data and the numerical calculations of the clean blade. The profile loss of the fouled blade is also predicted and compared to that of the clean blade.


Author(s):  
Jihang Li ◽  
Stephen Peluso ◽  
Domenic Santavicca ◽  
James Blust

Abstract The effect of a fully-premixed pilot flame on the velocity-forced flame response of a fully premixed flame in a single-nozzle lean-premixed swirl combustor operating on natural gas fuel is investigated. Measurements of the flame transfer function show that as the percent pilot is increased there is a decrease in the flame transfer function gain at all frequencies, a decrease in the frequencies at which the gain minima and maxima occurred, and a decrease in the flame transfer function phase at high frequencies. High-speed CH* chemiluminescence flame imaging is used to gain a better understanding of the mechanism(s) whereby the pilot flame affects flame dynamics and thereby the flame transfer function. Time-averaged flame images show that the location of the maximum heat release rate does not change with forcing frequency or percent pilot, although the flame extends further upstream into the inner shear layer with increasing percent pilot. Heat release rate fluctuation images show that significant heat release rate fluctuations occur in the inner shear layer, the outer recirculation zone, and the near wall region and that the primary effect of increasing the forcing frequency or the percent pilot is a shift of the heat release rate fluctuation from the near wall region to the inner shear layer. In addition, an increase in the percent pilot results in lengthening and narrowing of the inner shear layer and the near wall regions. The phase images show that the phase is less uniform as the frequency or percent pilot increase, resulting in greater interference between in phase and out of phase fluctuations which reduces the FTF gain. The phase images also show that the wavelength of the heat release rate perturbation travelling through the inner shear layer decreases with increasing frequency and percent pilot which suggests that the pilot flame alters the recirculation flow field. Flame transfer functions calculated for the heat release rate fluctuations in the inner shear layer, the near wall region and the outer recirculation zone show that the inner shear layer is the largest contributor to the global heat release rate fluctuation in the unpiloted flame and that the primary effect of the pilot flame on the reduction of the global FTF gain is a result of the pilot flame’s effect on the inner shear layer.


Author(s):  
Federica Farisco ◽  
Philipp Notsch ◽  
Rene Prieler ◽  
Felix Greiffenhagen ◽  
Jakob Woisetschlaeger ◽  
...  

Abstract In modern gas turbines for power generation and future aircraft engines, the necessity to reduce NOx emissions led to the implementation of a premixed combustion technology under fuel-lean conditions. In the combustion chamber of these systems, extreme pressure amplitudes can occur due to the unsteady heat release, reducing component life time or causing unexpected shutdown events. In order to understand and predict these instabilities, an accurate knowledge of the combustion process is inevitable. This study, which was provided by numerical methods, such as Computational Fluid Dynamics (CFD) is based on a three-dimensional (3D) geometry representing a premixed swirl-stabilized methane-fired burner configuration with a known flow field in the vicinity of the burner and well defined operating conditions. Numerical simulations of the swirl-stabilized methane-fired burner have been carried out using the commercial code ANSYS Fluent. The main objective is to validate the performance of various combustion models with different complexity by comparing against experimental data. Experiments have been performed for the swirl-stabilized methane-fired burner applying different technologies. Velocity fluctuation measurements have been carried out and validated through several techniques, such as Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV). Laser Interferometric Vibrometry (LIV) provided information on heat release fluctuations and OH*-chemiluminescence measurements have been done to identify the position of the main reaction zone. During the first part of the CFD investigation, the cold flow has been simulated applying different turbulence models and the velocity flow field obtained in the experiments has been compared with the numerical results. As next, the study focuses on the numerical analysis of the thermo-chemical processes in the main reaction zone. Few combustion models have been investigated beginning from Eddy Dissipation Model (EDM) and proceeding with increased complexity investigating the Steady Flamelet Model (SLF) and Flamelet Generated Manifold (FGM). An evaluation of the velocity field and temperature profile has been performed for all models used in order to test the validity of the numerical approach for the chosen geometry. The best option for future investigations of gas turbines has been identified.


Author(s):  
Zhibo Zhang ◽  
Hongtao Zheng ◽  
Zhiming Li ◽  
Yajun Li ◽  
Gang Pan ◽  
...  

Lean blowout (LBO) is one of the most important parameters on combustor performance. A new method named Feature-Section-criterion (FSC) for predicting LBO of aero-engine annular combustor has been put forward in the present work. A CFD software FLUENT has been used to simulate the combustion flow field of an annular combustor. The prediction of LBO with FSC has been done in this paper and the effects of flow velocity, air temperature and droplet averaged-diameter on the LBO of aero-engine combustor have been discussed by using of FSC. The results show that the predictions of FSC are in agreement with corresponding experimental data. This showing that this method for predicting lean blowout is reliable and can be used for engineering applications.


Author(s):  
R. Giezendanner ◽  
P. Weigand ◽  
X. R. Duan ◽  
W. Meier ◽  
U. Meier ◽  
...  

The driving mechanism of pulsations in gas turbine combustors depends on a complex interaction between flow field, chemistry, heat release, and acoustics. Experimental data on all these factors are therefore required to obtain insight into the coupling mechanisms during a pulsation period. In order to develop a comprehensive experimental data base to support a phenomenological understanding and to provide validation data for numerical simulation, a standard burner for optical investigations was established that exhibits strong self-excited oscillations. The burner was a swirl-stabilized non-premixed model combustor designed for gas turbine applications and operated using methane as fuel at atmospheric pressure. It was mounted in a combustion chamber which provides almost unobstructed optical access. The periodic combustion instabilities were studied by a variety of phase-resolved laser based diagnostic techniques, locked to the frequency of the dominant pressure oscillation. Measurement techniques used were LDV for velocity measurements, planar laser-induced fluorescence for imaging of CH and OH radicals, and laser Raman scattering for the determination of the major species concentrations, temperature, and mixture fraction. The phase-resolved measurements revealed significant variations of all measured quantities in the vicinity of the nozzle exit, which trailed off quickly with increasing distance. A strong correlation of heat release rate and axial velocity at the nozzle was observed, while the mean mixture fraction as well as the temperature in the periphery of the flame is phase-shifted with respect to axial velocity oscillations. A qualitative interpretation of the experimental observations is given, which will help to form a better understanding of the interaction between flow field, mixing, heat release, and temperature in pulsating reacting flows, particularly when accompanied by corresponding CFD simulations which are currently under way.


Author(s):  
Shi-bin Luo ◽  
Wei Huang ◽  
Hui Qin ◽  
Zhen-guo Wang ◽  
Jun Liu ◽  
...  

The two-dimensional coupled implicit RANS equations and three turbulent models have been employed to numerically simulate the nonreacting and reacting flow fields of a typical strut-based scramjet combustor, and the numerical results have been compared with the experimental data. At the same time, three different grid scales have been used to test the grid independence in the numerical simulations, namely the small scale (81,590 nodes), the moderate scale (98,510 nodes) and the large scale (147,470 nodes). The obtained results show that the RNG k-ε model is more suitable to numerically simulate the flow field in the scramjet combustor than the realizable k-ε model and the SST k-ω model, and the numerical results obtained by the moderate and large grid scales show reasonably better agreement with the experimental data. The quasi-diamond wave system is formed in both the nonreacting and reacting flow fields. In the reacting flow field, there are two clear strong shear layers generated between the fuel injection and the supersonic freestream, and at the intersection point between the shear layer and the reflected shock wave, the reaction zone is broader than anywhere else. In the corner formed between the upper surface of the strut and the shear layer, an expansion wave is clearly generated, and another also exists in the symmetrical corner.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Junfeng Sun ◽  
Meihong Liu ◽  
Zhen Xu ◽  
Taohong Liao ◽  
Xiangping Hu ◽  
...  

A new type of cylindrical gas film seal (CGFS) with a flexible support is proposed according to the working characteristics of the fluid dynamic seal in high-rotational-speed fluid machinery, such as aero-engines and centrifuges. Compared with the CGFS without a flexible support, the CGFS with flexible support presents stronger radial floating characteristics since it absorbs vibration and reduces thermal deformation of the rotor system. Combined with the structural characteristics of a film seal, an analytical model of CGFS with a flexible wave foil is established. Based on the fluid-structure coupling analysis method, the three-dimensional flow field of a straight-groove CGFS model is simulated to study the effects of operating and structural parameters on the steady-state characteristics and the effects of gas film thickness, eccentricity, and the number of wave foils on the equivalent stress of the flexible support. Simulation results show that the film stiffness increases significantly when the depth of groove increases. When the gas film thickness increases, the average equivalent stress of the flexible support first decreases and then stabilizes. Furthermore, the number of wave foils affects the average foils thickness. Therefore, when selecting the number of wave foils, the support stiffness and buffer capacity should be considered simultaneously.


Sign in / Sign up

Export Citation Format

Share Document