Lump and rational solutions for weakly coupled generalized Kadomtsev–Petviashvili equation

2021 ◽  
pp. 2150449
Author(s):  
Hongyu Wu ◽  
Jinxi Fei ◽  
Wenxiu Ma

Through the [Formula: see text]-KP hierarchy, we present a new (3+1)-dimensional equation called weakly coupled generalized Kadomtsev–Petviashvili (wc-gKP) equation. Based on Hirota bilinear differential equations, we get rational solutions to wc-gKP equation, and further we obtain lump solutions by searching for a symmetric positive semi-definite matrix. We do some numerical analysis on the trajectory of rational solutions and fit the trajectory equation of wave crest. Some graphics are illustrated to describe the properties of rational solutions and lump solutions. The method used in this paper to get lump solutions by constructing a symmetric positive semi-definite matrix can be applied to other integrable equations as well. The results expand the understanding of lump and rational solutions in soliton theory.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Na Xiong ◽  
Wen-Tao Li ◽  
Biao Li ◽  
Zine El Abiddine Fellah

Through the method of Z N -KP hierarchy, we propose a new ( 3 + 1 )-dimensional weakly coupled B-KP equation. Based on the bilinear form, we obtain the lump and rational solutions to the dimensionally reduced cases by constructing a symmetric positive semidefinite matrix. Then, we do numerical analysis on the rational solutions and fit the trajectory equation of the crest. Furthermore, we verify the accuracy of the trajectory equation by numerical analysis. This method of solving the lump and rational solutions can also be applied to other nonlinear evolution equations.


2020 ◽  
Vol 34 (07) ◽  
pp. 2050053
Author(s):  
Min Gao ◽  
Hai-Qiang Zhang

In this paper, we investigate a [Formula: see text]-dimensional B-type Kadomtsev-Petviashvili (BKP) equation, which is a generalization of the [Formula: see text]-dimensional equation. Based on the Hirota bilinear method and the limit technique of long wave, we systematically construct a family of exact solutions of BKP equation including the [Formula: see text]-solitary wave solution, lump solution as well as interaction solution between lump waves and solitary waves.


2019 ◽  
Vol 33 (07) ◽  
pp. 1950038 ◽  
Author(s):  
Solomon Manukure ◽  
Yuan Zhou

We introduce a new (2+1)-dimensional equation by modifying the potential form of the Calogero–Bogoyavlenskii–Schiff (CBS) equation. By applying the Hirota bilinear method, we construct explicit lump solutions to this new equation and establish necessary and sufficient conditions that guarantee that the solutions are analytic and rationally localized in all directions in space. We also depict the evolution of the profiles of some selected lump solutions with three-dimensional and contour plots. It is immediately observed that the lump solutions generated are solitary wave type solutions as is the case with the KP equation.


2019 ◽  
Vol 34 (03) ◽  
pp. 2050033 ◽  
Author(s):  
Xuelin Yong ◽  
Xiaoyu Li ◽  
Yehui Huang ◽  
Wen-Xiu Ma ◽  
Yong Liu

In this paper, explicit representation of general rational solutions for the (3[Formula: see text]+[Formula: see text]1)-dimensional Mel’nikov equation is derived by employing the Hirota bilinear method. It is obtained in terms of determinants whose matrix elements satisfy some differential and difference relations. By selecting special value of the parameters involved, the first-order and second-order lump solutions are given and their dynamic characteristics are illustrated by two- and three-dimensional figures.


2018 ◽  
Vol 95 (2) ◽  
pp. 1027-1033 ◽  
Author(s):  
Jian-Guo Liu ◽  
Mostafa Eslami ◽  
Hadi Rezazadeh ◽  
Mohammad Mirzazadeh

2019 ◽  
Vol 23 (4) ◽  
pp. 2437-2445 ◽  
Author(s):  
Xiaoqing Gao ◽  
Sudao Bilige ◽  
Jianqing Lü ◽  
Yuexing Bai ◽  
Runfa Zhang ◽  
...  

In this paper, abundant lump solutions and two types of interaction solutions of the (3+1)-D Kadomtsev-Petviashvili equation are obtained by the Hirota bilinear method. Some contour plots with different determinant values are sequentially given to show that the corresponding lump solution tends to zero when the deter-minant approaches to zero. The interaction solutions with special parameters are plotted to elucidate the solution properties.


2020 ◽  
Vol 34 (22) ◽  
pp. 2050224
Author(s):  
Shun Wang ◽  
Chuanzhong Li ◽  
Zhenli Wang

By symbolic computation and searching for the solutions of the positive quadratic functions of the related bilinear equations, two kinds of lump solutions of the (3[Formula: see text]+[Formula: see text]1)-dimensional weakly coupled Hirota bilinear equation are derived, and the practicability of this method is verified. Then we add an exponential function to the original positive quadratic function, and obtain a new solution of the Hirota bilinear equation. The interaction between the lump solutions and lump-kink solutions is included in the new solution. On this basis, we give the possibility of adding multiple exponential functions. Finally, we give the coupled reduced Hirota bilinear equation lump-kink solitons by combining the above two methods. In order to ensure the analyticity and reasonable localization of the block, two sets of necessary and sufficient conditions are given for the parameters involved in the solution. The local characteristics and energy distribution of bulk solution are analyzed and explained.


Author(s):  
Na Liu ◽  
Xinhua Tang ◽  
Weiwei Zhang

This paper is devoted to obtaining the multi-soliton solutions, high-order breather solutions and high-order rational solutions of the (3+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation by applying the Hirota bilinear method and the long-wave limit approach. Moreover, the interaction solutions are constructed by choosing appropriate value of parameters, which consist of four waves for lumps, breathers, rouges and solitons. Some dynamical characteristics for the obtained exact solutions are illustrated using figures.


2021 ◽  
pp. 39-39
Author(s):  
Yanni Zhang ◽  
Xin Zhao ◽  
Jing Pang

Based on Hirota bilinear formulation, the lump solutions to dimensionally reduced generalized variable coefficient B-type Kadomtsev-Petviashvili equation are obtained. The solution process is figured out and the solution properties are illustrated graphically. The present method can be extended to other nonlinear equations.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Hong-Yu Wu ◽  
Jin-Xi Fei ◽  
Zheng-Yi Ma ◽  
Jun-Chao Chen ◽  
Wen-Xiu Ma

The Kadomtsev–Petviashvili equation is one of the well-studied models of nonlinear waves in dispersive media and in multicomponent plasmas. In this paper, the coupled Alice-Bob system of the Kadomtsev–Petviashvili equation is first constructed via the parity with a shift of the space variable x and time reversal with a delay. By introducing an extended Bäcklund transformation, symmetry breaking soliton, symmetry breaking breather, and symmetry breaking lump solutions for this system are presented through the established Hirota bilinear form. According to the corresponding constants in the involved ansatz function, a few fascinating symmetry breaking structures of the presented explicit solutions are shown.


Sign in / Sign up

Export Citation Format

Share Document