X-RAY ABSORPTION MAGNETIC CIRCULAR DICHROISM: SIMPLIFIED SPIN-ALIGNMENT ANALYSIS OF F ELECTRON SYSTEMS

1993 ◽  
Vol 07 (05) ◽  
pp. 317-323 ◽  
Author(s):  
J. G. TOBIN ◽  
G. D. WADDILL

A simplified expression relating branching ratios to spin-alignment and circular polarization is presented for X-ray absorption in the rare-earth and actinide elements. This approximate method, while probably of less comprehensive utility than the analogous expression for 3d materials, can still provide useful information under many conditions, particularly limiting case situations. Analysis of gadolinium data will demonstrate the utility of this method.

2020 ◽  
Vol 116 (20) ◽  
pp. 201905
Author(s):  
Biqiong Yu ◽  
Guichuan Yu ◽  
Jeff Walter ◽  
Vipul Chaturvedi ◽  
Joseph Gotchnik ◽  
...  

Nano Research ◽  
2021 ◽  
Author(s):  
Alevtina Smekhova ◽  
Alexei Kuzmin ◽  
Konrad Siemensmeyer ◽  
Chen Luo ◽  
Kai Chen ◽  
...  

AbstractModern design of superior multi-functional alloys composed of several principal components requires in-depth studies of their local structure for developing desired macroscopic properties. Herein, peculiarities of atomic arrangements on the local scale and electronic states of constituent elements in the single-phase face-centered cubic (fcc)- and body-centered cubic (bcc)-structured high-entropy Alx-CrFeCoNi alloys (x = 0.3 and 3, respectively) are explored by element-specific X-ray absorption spectroscopy in hard and soft X-ray energy ranges. Simulations based on the reverse Monte Carlo approach allow to perform a simultaneous fit of extended X-ray absorption fine structure spectra recorded at K absorption edges of each 3d constituent and to reconstruct the local environment within the first coordination shells of absorbers with high precision. The revealed unimodal and bimodal distributions of all five elements are in agreement with structure-dependent magnetic properties of studied alloys probed by magnetometry. A degree of surface atoms oxidation uncovered by soft X-rays suggests different kinetics of oxide formation for each type of constituents and has to be taken into account. X-ray magnetic circular dichroism technique employed at L2.3 absorption edges of transition metals demonstrates reduced magnetic moments of 3d metal constituents in the sub-surface region of in situ cleaned fcc-structured Al0.3-CrFeCoNi compared to their bulk values. Extended to nanostructured versions of multicomponent alloys, such studies would bring new insights related to effects of high entropy mixing on low dimensions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fridtjof Kielgast ◽  
Ivan Baev ◽  
Torben Beeck ◽  
Federico Pressacco ◽  
Michael Martins

AbstractMass-selected V and Fe monomers, as well as the heterodimer $${\text{Fe}}_1{\text{V}}_1$$ Fe 1 V 1 , were deposited on a Cu(001) surface. Their electronic and magnetic properties were investigated via X-ray absorption (XAS) and X-ray magnetic circular dichroism (XMCD) spectroscopy. Anisotropies in the magnetic moments of the deposited species could be examined by means of angle resolving XMCD, i.e. changing the X-ray angle of incidence. A weak adatom-substrate-coupling was found for both elements and, using group theoretical arguments, the ground state symmetries of the adatoms were determined. For the dimer, a switching from antiparallel to parallel orientation of the respective magnetic moments was observed. We show that this is due to the existence of a noncollinear spin-flop phase in the deposited dimers, which could be observed for the first time in such a small system. Making use of the two magnetic sublattices model, we were able to find the relative orientations for the dimer magnetic moments for different incidence angles.


2017 ◽  
Vol 81 (4) ◽  
pp. 857-872 ◽  
Author(s):  
Richard A. D. Pattrick ◽  
Victoria S. Coker ◽  
Masood Akhtar ◽  
M. Azad Malik ◽  
Edward Lewis ◽  
...  

AbstractSynthesis of Ni and Zn substituted nano-greigite, Fe3S4, is achieved from single source diethyldithiocarbamato precursor compounds, producing particles typically 50–100 nm in diameter with plate-like pseudohexagonal morphologies. Up to 12 wt.% Ni is incorporated into the greigite structure, and there is evidence that Zn is also incorporated but Co is not substituted into the lattice. The FeL3X-ray absorption spectra for these materials have a narrow single peak at 707.7 eV and the resulting main X-ray magnetic circular dichroism (XMCD) has the same sign at 708.75 eV. All XMCD spectra also have a broad positive feature at 711 eV, a characteristic of covalent mixing. The greigite XMCD spectra contrast with the three clearly defined XMCD site specific peaks found in the ferrite spinel, magnetite. The FeL2,3X-ray absorption spectra and XMCD spectra of the greigite reflect and reveal the high conductivity of greigite and the very strong covalency of the Fe–S bonding. The electron hopping between Fe3+and Fe2+on octahedral sites results in an intermediate oxidation state of the Fe in the Ohsite of Fe2.5+producing an effective formula of [Fe3+↑]A-site[2Fe2.5+↓]B-siteS42–]. The NiL2,3X-ray absorption spectra and XMCD reveal substitution on the Ohsite with a strongly covalent character and an oxidation state <Ni1.5+in a representative formula [Fe3+↑]A[[(2 – x)Fe2.5+↓][Nix1.5+]]BS42–.


2008 ◽  
Vol 1111 ◽  
Author(s):  
Shuichi Emura ◽  
Masahiro Takahashi ◽  
Hiroyuki Tambo ◽  
Akira Suzuki ◽  
Tetsuya Nakamura ◽  
...  

AbstractThe magnetic characteristics of the dilute magnetic system GaGdN are investigated by mainly soft-X-ray magnetic circular dichroism (MCD) in energy range of 1160 – 1240 eV. The strong MCD signals up to 30 % at 15K are observed. The temperature dependence of its intensity is not on simple Curie-Weiss curve and depicts three-step curve. A step around 40 – 100K suggests a new magnetic phase. The luminescence spectrum of GaGdN at low temperature is divided into three parts consisting of two broad bands around 432 nm and 503 nm and a sharp peak at 652 nm. This sharp line is assigned to the intra-transition of f – f orbital owing to the weak temperature dependence of the intensity and peak position. AlGdN grown by molecular beam epitaxy produces luminescence at 318.5 nm. X-ray absorption fine structure is examined to survey the occupancy of the Gd ion in the grown specimens.


1986 ◽  
Vol 47 (4) ◽  
pp. 413-416 ◽  
Author(s):  
G. van der Laan ◽  
J.C. fuggle ◽  
M.P. van Dijk ◽  
A.J. Burggraaf ◽  
J.-M. Esteva ◽  
...  

2003 ◽  
Vol 798 ◽  
Author(s):  
V. Katchkanov ◽  
J. F. W. Mosselmans ◽  
S. Dalmasso ◽  
K. P. O'Donnell ◽  
R. W. Martin ◽  
...  

ABSTRACTThe local structure around Er and Eu atoms introduced into GaN epilayers was studied by means of Extended X-ray Absorption Fine Structure above the appropriate rare-earth X-ray absorption edge. The samples were doped in situ during growth by Molecular Beam Epitaxy. The formation of ErN clusters was found in samples with high average Er concentrations of 32±6% and 12.4±0.8%, estimated by Wavelength Dispersive X-ray analysis. When the average Er concentration is decreased to 6.0±0.2%, 1.6±0.2% and 0.17±0.02%, Er is found in localised clusters of ErGaN phase with high local Er content. Similar behaviour is observed for Eu-doped samples. For an average Eu concentration of 30.5±0.5% clusters of pure EuN occur. Decreasing the Eu concentration to 10.4±0.5% leads to EuGaN clusters with high local Eu content. However, for a sample with an Eu concentration of 14.2±0.5% clustering of Eu was not observed.


2003 ◽  
Vol 93 (10) ◽  
pp. 8337-8339 ◽  
Author(s):  
S. S. Dhesi ◽  
P. Bencok ◽  
N. B. Brookes ◽  
G. van der Laan ◽  
R. M. Galéra

Sign in / Sign up

Export Citation Format

Share Document