Static and Dynamic Properties of a Two-Dimensional Charged Bose Fluid

1998 ◽  
Vol 12 (12) ◽  
pp. 459-465 ◽  
Author(s):  
E. Strepparola ◽  
M. P. Tosi

A complete solution of the Singwi–Tosi–Land–Sjölander approximation is given for the ground state and the elementary excitations of a fluid of charged bosons interacting via the two-dimensional ln (r) Coulomb potential at arbitrarily large coupling strength r s . The results are used to discuss the limitations of a static-mean-field approach in such a strongly correlated system.

1990 ◽  
Vol 04 (04) ◽  
pp. 631-658 ◽  
Author(s):  
D. V. KHVESHCHENKO ◽  
YA. I. KOGAN

We study parity violating states of strongly correlated two-dimensional electronic systems. On the basis of mean field theory for the SU (2N)-symmetric generalization of the system involved we give the arguments supporting the existence of these states at a filling number different from one-half. We derive an effective Lagrangian describing the long wavelength dynamics of magnetic excitations and their interaction with charged spinless holes. We establish that the ground state of a doped system is superconducting and discuss the phenomenological manifestations of the parity violation.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Christopher Orthodoxou ◽  
Amelle Zaïr ◽  
George H. Booth

AbstractWith a combination of numerical methods, including quantum Monte Carlo, exact diagonalization, and a simplified dynamical mean-field model, we consider the attosecond charge dynamics of electrons induced by strong-field laser pulses in two-dimensional Mott insulators. The necessity to go beyond single-particle approaches in these strongly correlated systems has made the simulation of two-dimensional extended materials challenging, and we contrast their resulting high-harmonic emission with more widely studied one-dimensional analogues. As well as considering the photo-induced breakdown of the Mott insulating state and magnetic order, we also resolve the time and ultra-high-frequency domains of emission, which are used to characterize both the photo-transition, and the sub-cycle structure of the electron dynamics. This extends simulation capabilities and understanding of the photo-melting of these Mott insulators in two dimensions, at the frontier of attosecond non-equilibrium science of correlated materials.


2000 ◽  
Vol 10 (01) ◽  
pp. 251-256 ◽  
Author(s):  
FRANCISCO SASTRE ◽  
GABRIEL PÉREZ

The diffusively coupled lattice of odd-symmetric chaotic maps introduced by Miller and Huse undergoes a continuous ordering phase transition, belonging to a universality class close but not identical to that of the two-dimensional Ising model. Here we consider a natural mean-field approach for this model, and find that it does not have a well-defined phase transition. We show how this is due to the coexistence of two attractors in its mean-field description, for the region of interest in the coupling. The behavior of the model in this limit then becomes dependent on initial conditions, as can be seen in direct simulations.


2018 ◽  
Vol 185 ◽  
pp. 08006
Author(s):  
Vitaly Konev ◽  
Evgeny Vasinovich ◽  
Vasily Ulitko ◽  
Yury Panov ◽  
Alexander Moskvin

We have applied a generalized mean-field approach and quantum Monte-Carlo technique for the model 2D S = 1 (pseudo)spin system to find the ground state phase with its evolution under application of the (pseudo)magnetic field. The comparison of the two methods allows us to clearly demonstrate the role of quantum effects. Special attention is given to the role played by an effective single-ion anisotropy ("on-site correlation").


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
H. Güven ◽  
K. Bozkurt ◽  
E. Khan ◽  
J. Margueron

Sign in / Sign up

Export Citation Format

Share Document