Electronically Tunable Memcapacitor Emulator Based on Operational Transconductance Amplifiers

Author(s):  
Mustafa Konal ◽  
Firat Kacar

Memory circuit elements are of interest due to their use in different fields of science and technology. In this research, a new multi-outputs operational transconductance amplifiers (MO-OTA)-based memcapacitor emulator is proposed. The proposed emulator employs two OTAs, two capacitors, two resistors and an analog multiplier. The memcapacitor emulator circuit has electronically tunability property. Charge value of the memcapacitor can be adjusted by changing the transconductance [Formula: see text] value with the biasing current of the MO-OTA or frequency value of the input signal. In order to analyze the performance of the proposed circuit, memcapacitor emulator is simulated in 0.18[Formula: see text][Formula: see text]m TSMC CMOS process using LTSPICE and the simulation results are demonstrated.

2001 ◽  
Vol 24 (4) ◽  
pp. 233-241 ◽  
Author(s):  
Muhammad Taher Abuelmaatti

A new active-only sinusoidal oscillator is presented. The oscillator circuit uses two internally compensated operational amplifiers, two plus-type second-generation current conveyors and three operational transconductance amplifiers. The proposed circuit enjoys the attractive features of totally uncoupled frequency and condition of oscillation, low sensitivities, electronic tunability and integratability.


1996 ◽  
Vol 19 (1) ◽  
pp. 55-58
Author(s):  
Muhammad Taher Abuelma'atti ◽  
Muhammad Haroon Khan

A new circuit for simulating a grounded capacitor is presented. The circuit uses one operationalamplifier (OA), three operational-transconductance amplifiers (OTAs), and one capacitor. The realized capacitor is temperature-insensitive and electronically tunable. Experimental results are included.


1998 ◽  
Vol 20 (4) ◽  
pp. 189-194 ◽  
Author(s):  
Muhammad Taher Abuelma'atti ◽  
Muhammad Haroon Khan

New oscillator circuit using two operational transconductance amplifiers and grounded capacitors is presented. The oscillator circuit enjoys independent control of the frequency and the condition of oscillation. Experimental results confirming the presented theory are included.


Author(s):  
D. R. Bhaskar ◽  
Ajishek Raj ◽  
Pragati Kumar

This paper introduces four new resistorless, third-order, electronically tunable, quadrature sinusoidal oscillators using three operational transconductance amplifiers (OTAs) and three capacitors. The proposed third-order quadrature sinusoidal oscillators (TOQSOs) provide noninteracting control of the oscillation condition (OC) and oscillation frequency (OF) by changing the transconductance of different OTAs, to produce sustained oscillations and offer quadrature output voltages and currents. Two of the proposed quadrature oscillator circuits have capacitor control of OF, a feature, useful in capacitive transducers. The presented TOQSO structures have good frequency stability and exhibit low active and passive sensitivities. PSPICE simulations using CMOS OTAs along with hardware results (using off-the-shelf available OTA IC LM13700) have also been provided to confirm the workability of the presented circuits.


2017 ◽  
Vol 27 (05) ◽  
pp. 1750077 ◽  
Author(s):  
Mohammad Rafiq Dar ◽  
Nasir Ali Kant ◽  
Farooq Ahmad Khanday

In this paper, electronic implementation of fractional-order Rössler system using operational transconductance amplifiers (OTAs) is presented which until now was only being investigated through numerical simulations. The realization offers the benefits of low-voltage implementation, integrability and electronic tunability. In addition, the proposed circuit is a MOS only design (as no BJTs have been used) which contains only grounded components and is therefore suitable for monolithic VLSI design. The chaotic behavior of the fractional-order Rössler system in consideration with the incommensurate orders has been demonstrated which finds many applications in several fields. The theoretical predictions of the proposed implementation have been verified through experimentation and HSPICE simulator using Austrian Micro System (AMS) 0.35[Formula: see text][Formula: see text]m CMOS process and the obtained results have been found in good agreement with the Matlab simulink theoretical results obtained using FOMCON simulink toolbox. Besides, a secure message communication system has been considered to demonstrate fully the usefulness of the chaotic system.


2020 ◽  
Vol 11 (1) ◽  
pp. 129
Author(s):  
Po-Yu Kuo ◽  
Ming-Hwa Sheu ◽  
Chang-Ming Tsai ◽  
Ming-Yan Tsai ◽  
Jin-Fa Lin

The conventional shift register consists of master and slave (MS) latches with each latch receiving the data from the previous stage. Therefore, the same data are stored in two latches separately. It leads to consuming more electrical power and occupying more layout area, which is not satisfactory to most circuit designers. To solve this issue, a novel cross-latch shift register (CLSR) scheme is proposed. It significantly reduced the number of transistors needed for a 256-bit shifter register by 48.33% as compared with the conventional MS latch design. To further verify its functions, this CLSR was implemented by using TSMC 40 nm CMOS process standard technology. The simulation results reveal that the proposed CLSR reduced the average power consumption by 36%, cut the leakage power by 60.53%, and eliminated layout area by 34.76% at a supply voltage of 0.9 V with an operating frequency of 250 MHz, as compared with the MS latch.


2010 ◽  
Vol 19 (03) ◽  
pp. 519-528 ◽  
Author(s):  
M. PRAMOD ◽  
T. LAXMINIDHI

Continuous common mode feedback (CMFB) circuits having high input impedance and low distortion are proposed. The proposed circuits are characterized for 0.18 μm CMOS process with 1.8 V supply. Simulation results indicate that the proposed common mode detector consumes no standby power and CMFB circuit consumes 27–34% less power than previous high swing CMFB circuits.


Sign in / Sign up

Export Citation Format

Share Document