Traveling Waves Connecting Equilibrium and Periodic Orbit for a Delayed Population Model on a Two-Dimensional Spatial Lattice
This paper is concerned with the existence of fast traveling waves connecting an equilibrium and a periodic orbit in a delayed population model with stage structure on a two-dimensional spatial lattice, under the assumption that the corresponding ODEs have heteroclinic orbits connecting an equilibrium point and a periodic solution. In this work, we rewrite the mixed functional differential equation as an integral equation in a Banach space and analyze the corresponding linear operator. Our approach eventually reduces a singular perturbation problem to a regular perturbation problem. The existence of traveling wave solution therefore is obtained by using the Liapunov–Schmidt method and implicit function theorem.