Bifurcation Analysis in a Class of Piecewise Nonlinear Systems with a Nonsmooth Heteroclinic Loop

2018 ◽  
Vol 28 (02) ◽  
pp. 1850026
Author(s):  
Yuanyuan Liu ◽  
Feng Li ◽  
Pei Dang

We consider the bifurcation in a class of piecewise polynomial systems with piecewise polynomial perturbations. The corresponding unperturbed system is supposed to possess an elementary or nilpotent critical point. First, we present 17 cases of possible phase portraits and conditions with at least one nonsmooth periodic orbit for the unperturbed system. Then we focus on the two specific cases with two heteroclinic orbits and investigate the number of limit cycles near the loop by means of the first-order Melnikov function, respectively. Finally, we take a quartic piecewise system with quintic piecewise polynomial perturbation as an example and obtain that there can exist ten limit cycles near the heteroclinic loop.

2021 ◽  
Vol 31 (09) ◽  
pp. 2150123
Author(s):  
Xiaoyan Chen ◽  
Maoan Han

In this paper, we study Poincaré bifurcation of a class of piecewise polynomial systems, whose unperturbed system has a period annulus together with two invariant lines. The main concerns are the number of zeros of the first order Melnikov function and the estimation of the number of limit cycles which bifurcate from the period annulus under piecewise polynomial perturbations of degree [Formula: see text].


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Yanqin Xiong ◽  
Maoan Han

This paper concerns limit cycle bifurcations by perturbing a piecewise linear Hamiltonian system. We first obtain all phase portraits of the unperturbed system having at least one family of periodic orbits. By using the first-order Melnikov function of the piecewise near-Hamiltonian system, we investigate the maximal number of limit cycles that bifurcate from a global center up to first order ofε.


2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Meilan Cai ◽  
Maoan Han

In this paper, we consider the bifurcation problem of limit cycles for a class of piecewise smooth cubic systems separated by the straight line [Formula: see text]. Using the first order Melnikov function, we prove that at least [Formula: see text] limit cycles can bifurcate from an isochronous cubic center at the origin under perturbations of piecewise polynomials of degree [Formula: see text]. Further, the maximum number of limit cycles bifurcating from the center of the unperturbed system is at least [Formula: see text] if the origin is the unique singular point under perturbations.


2012 ◽  
Vol 22 (12) ◽  
pp. 1250296 ◽  
Author(s):  
MAOAN HAN

In the study of the perturbation of Hamiltonian systems, the first order Melnikov functions play an important role. By finding its zeros, we can find limit cycles. By analyzing its analytical property, we can find its zeros. The main purpose of this article is to summarize some methods to find its zeros near a Hamiltonian value corresponding to an elementary center, nilpotent center or a homoclinic or heteroclinic loop with hyperbolic saddles or nilpotent critical points through the asymptotic expansions of the Melnikov function at these values. We present a series of results on the limit cycle bifurcation by using the first coefficients of the asymptotic expansions.


2016 ◽  
Vol 26 (11) ◽  
pp. 1650180 ◽  
Author(s):  
Ali Bakhshalizadeh ◽  
Hamid R. Z. Zangeneh ◽  
Rasool Kazemi

In this paper, the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp of order two and a hyperbolic saddle for a planar near-Hamiltonian system is given. Next, we consider the limit cycle bifurcations of a hyper-elliptic Liénard system with this kind of heteroclinic loop and study the least upper bound of limit cycles bifurcated from the period annulus inside the heteroclinic loop, from the heteroclinic loop itself and the center. We find that at most three limit cycles can be bifurcated from the period annulus, also we present different distributions of bifurcated limit cycles.


2010 ◽  
Vol 20 (05) ◽  
pp. 1379-1390 ◽  
Author(s):  
XIA LIU ◽  
MAOAN HAN

In this paper, the general perturbation of piecewise Hamiltonian systems on the plane is considered. When the unperturbed system has a family of periodic orbits, similar to the perturbations of smooth system, an expression of the first order Melnikov function is derived, which can be used to study the number of limit cycles bifurcated from the periodic orbits. As applications, the number of bifurcated limit cycles of several concrete piecewise systems are presented.


2016 ◽  
Vol 26 (01) ◽  
pp. 1650009 ◽  
Author(s):  
Lijuan Sheng

In this paper, we study the problem of limit cycle bifurcation in two piecewise polynomial systems of Liénard type with multiple parameters. Based on the developed Melnikov function theory, we obtain the maximum number of limit cycles of these two systems.


2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Chunyu Zhu ◽  
Yun Tian

In this paper, we consider a nongeneric quadratic reversible system with piecewise polynomial perturbations. We use the expansion of the first order Melnikov function to obtain the maximal number of small-amplitude limit cycles produced by Hopf bifurcation in the perturbed systems.


2019 ◽  
Vol 29 (05) ◽  
pp. 1950072
Author(s):  
Jianfeng Huang ◽  
Yuye Jin

This paper deals with a kind of piecewise smooth equation which is linear in the dependent variable. We study the problem of lower bounds for the maximum number of limit cycles of such equations using Melnikov functions. First of all, using the first order Melnikov function, we prove that these differential equations have a sharp upper bound for the number of the limit cycles which bifurcate from the periodic orbits and cross the separation straight line. Furthermore, in some cases the maximum number of these limit cycles is three, up to any order analysis. In the end, we apply this result on a kind of piecewise smooth planar system which has a separation curve with [Formula: see text] up to homomorphism.


2011 ◽  
Vol 21 (11) ◽  
pp. 3341-3357
Author(s):  
PEIPEI ZUO ◽  
MAOAN HAN

In this paper, by using qualitative analysis and the first-order Melnikov function method, we consider two kinds of polynomial systems, and study the Hopf bifurcation problem, obtaining the maximum number of limit cycles.


Sign in / Sign up

Export Citation Format

Share Document