Dynamics of Wild and Sterile Mosquito Population Models with Delayed Releasing

2020 ◽  
Vol 30 (11) ◽  
pp. 2050218
Author(s):  
Li-Ming Cai

To reduce the global burden of mosquito-borne diseases, e.g. dengue, malaria, the need to develop new control methods is to be highlighted. The sterile insect technique (SIT) and various genetic modification strategies, have a potential to contribute to a reversal of the current alarming disease trends. In our previous work, the ordinary differential equation (ODE) models with different releasing sterile mosquito strategies are investigated. However, in reality, implementing SIT and the releasing processes of sterile mosquitos are very complex. In particular, the delay phenomena always occur. To achieve suppression of wild mosquito populations, in this paper, we reassess the effect of the delayed releasing of sterile mosquitos on the suppression of interactive mosquito populations. We extend the previous ODE models to the delayed releasing models in two different ways of releasing sterile mosquitos, where both constant and exponentially distributed delays are considered, respectively. By applying the theory and methods of delay differential equations, the effect of time delays on the stability of equilibria in the system is rigorously analyzed. Some sustained oscillation phenomena via Hopf bifurcations in the system are observed. Numerical examples demonstrate rich dynamical features of the proposed models. Based on the obtained results, we also suggest some new releasing strategies for sterile mosquito populations.

Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 257 ◽  
Author(s):  
B. A. Pansera ◽  
L. Guerrini ◽  
M. Ferrara ◽  
T. Ciano

The aim of this study is to analyse a discrete-time two-stage game with R&D competition by considering a continuous-time set-up with fixed delays. The model is represented in the form of delay differential equations. The stability of all the equilibrium points is studied. It is found that the model exhibits very complex dynamical behaviours, and its Nash equilibrium is destabilised via Hopf bifurcations.


2002 ◽  
Vol 30 (6) ◽  
pp. 339-351
Author(s):  
M. S. Fofana

The aim of this paper is to establish a connecting thread through the probabilistic concepts ofpth-moment Lyapunov exponents, the integral averaging method, and Hale's reduction approach for delay dynamical systems. We demonstrate this connection by studying the stability of perturbed deterministic and stochastic differential equations with fixed time delays in the displacement and derivative functions. Conditions guaranteeing stable and unstable solution response are derived. It is felt that the connecting thread provides a unified framework for the stability study of delay differential equations in the deterministic and stochastic sense.


2017 ◽  
Vol 27 (09) ◽  
pp. 1750133 ◽  
Author(s):  
Xia Liu ◽  
Tonghua Zhang

In this paper, the Bogdanov–Takens (B–T) and triple zero bifurcations are investigated for coupled van der Pol–Duffing oscillators with [Formula: see text] symmetry, in the presence of time delays due to the intrinsic response and coupling. Different from previous works, third order unfolding normal forms associated with B–T and triple zero bifurcations are needed, which are obtained by using the normal form theory of delay differential equations. Numerical simulations are also presented to illustrate the theoretical results.


Author(s):  
Süleyman Öğrekçi

In this paper, we consider the stability problem of delay differential equations in the sense of Hyers-Ulam-Rassias. Recently this problem has been solved for bounded intervals, our result extends and improve the literature by obtaining stability in unbounded intervals. An illustrative example is also given to compare these results and visualize the improvement.


2019 ◽  
Vol 29 (12) ◽  
pp. 1950163 ◽  
Author(s):  
Suqi Ma

By applying a geometrical scheme developed to tackle the eigenvalue problem of delay differential equations with multiple time delays, Hopf bifurcation of Hopfield neuron model is analyzed in two-parameter space. By the introduction of two new angles, the calculation of imaginary roots is carried out analytically and effectively. By increasing the parameter to cross over the Hopf bifurcation lines, the stability switching direction is confirmed. The method is a useful tool to show the partition of stable and unstable regions in two-parameter space and detect double Hopf bifurcation further. The typified dynamical behaviors based on nearby double Hopf points are analyzed by applying the normal form technique and center manifold method.


Author(s):  
Anwar Sadath ◽  
C. P. Vyasarayani

A numerical method to determine the stability of delay differential equations (DDEs) with time periodic coefficients is proposed. The DDE is converted into an equivalent partial differential equation (PDE) with a time periodic boundary condition (BC). The PDE, along with its BC, is then converted into a system of ordinary differential equations (ODEs) with time periodic coefficients using the Galerkin least squares approach. In the Galerkin approach, shifted Legendre polynomials are used as basis functions, allowing us to obtain explicit expressions for the approximate system of ODEs. We analyze the stability of the discretized ODEs, which represent an approximate model of the DDEs, using Floquet theory. We use numerical examples to show that the stability charts obtained with our method are in excellent agreement with those existing in the literature and those obtained from direct numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document