Complex Dynamics of a Four-Dimensional Circuit System

2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Haijun Wang ◽  
Hongdan Fan ◽  
Jun Pan

Combining qualitative analysis and numerical technique, the present work revisits a four-dimensional circuit system in [Ma et al., 2016] and mainly reveals some of its rich dynamics not yet investigated: pitchfork bifurcation, Hopf bifurcation, singularly degenerate heteroclinic cycle, globally exponentially attractive set, invariant algebraic surface and heteroclinic orbit. The main contributions of the work are summarized as follows: Firstly, it is proved that there exists a globally exponentially attractive set with three different exponential rates by constructing a suitable Lyapunov function. Secondly, the existence of a pair of heteroclinic orbits is also proved by utilizing two different Lyapunov functions. Finally, numerical simulations not only are consistent with theoretical results, but also illustrate potential existence of hidden attractors in its Lorenz-type subsystem, singularly degenerate heteroclinic cycles with distinct geometrical structures and nearby hyperchaotic attractors in the case of small [Formula: see text], i.e. hyperchaotic attractors and nearby pseudo singularly degenerate heteroclinic cycles, i.e. a short-duration transient of singularly degenerate heteroclinic cycles approaching infinity, or the true ones consisting of normally hyperbolic saddle-foci (or saddle-nodes) and stable node-foci, giving some kind of forming mechanism of hyperchaos.

2007 ◽  
Vol 07 (02) ◽  
pp. 187-228 ◽  
Author(s):  
RICHARD B. SOWERS

We refine some of the bounds of [10]. There, we considered the effect of diffusive perturbations on a two-dimensional ODE with a heteroclinic cycle. We constructed corrector functions for asymptotically "glueing" together behavior of periodic orbits in the boundary layer near the heteroclinic cycle. Here, we adapt the analysis of [10] to allow for "long" heteroclinic cycles.


2001 ◽  
Vol 11 (09) ◽  
pp. 2451-2461
Author(s):  
TIFEI QIAN

The variational method has shown many advantages over the geometric method in proving the existence of connecting orbits since it requires much weaker hyperbolicity and less smoothness. Many results known to be difficult to obtain by the geometric method can now be obtained by a variational principle with relative ease. In particular, a variational principle provides a constructive approach to the existence of heteroclinic orbits. In this paper a variational principle is used to construct a heteroclinic orbit between an adjacent minimal pair of fixed points for monotone twist maps on (ℝ/ℤ) × ℝ. Application of our results to a standard map is also given.


2014 ◽  
Vol 24 (10) ◽  
pp. 1450133 ◽  
Author(s):  
Haijun Wang ◽  
Xianyi Li

After a 3D Lorenz-like system has been revisited, more rich hidden dynamics that was not found previously is clearly revealed. Some more precise mathematical work, such as for the complete distribution and the local stability and bifurcation of its equilibrium points, the existence of singularly degenerate heteroclinic cycles as well as homoclinic and heteroclinic orbits, and the dynamics at infinity, is carried out in this paper. In particular, another possible new mechanism behind the creation of chaotic attractors is presented. Based on this mechanism, some different structure types of chaotic attractors are numerically found in the case of small b > 0. All theoretical results obtained are further illustrated by numerical simulations. What we formulate in this paper is to not only show those dynamical properties hiding in this system, but also (more mainly) present a kind of way and means — both "locally" and "globally" and both "finitely" and "infinitely" — to comprehensively explore a given system.


2019 ◽  
Vol 29 (07) ◽  
pp. 1950092 ◽  
Author(s):  
Qigui Yang ◽  
Lingbing Yang ◽  
Bin Ou

This paper reports some hidden hyperchaotic attractors and complex dynamics in a new five-dimensional (5D) system with only two nonlinear terms. The system is generated by adding two linear controllers to an unusual 3D autonomous quadratic chaotic system with two stable node-foci. In particular, the hyperchaotic system without equilibrium or with only one stable equilibrium can generate two kinds of hidden hyperchaotic attractors with three positive Lyapunov exponents. Numerical methods not only verify the existence of such attractors and hyperchaotic attractors, but also show the dynamical evolution of this system. The 5D system has self-excited attractors and two types of hidden attractors with the change of its parameter. The parameter switching algorithm is further utilized to numerically approximate the attractor. Specifically, the hidden hyperchaotic attractor can be approximated by switching between two self-excited chaotic attractors. Finally, the circuit realization results are consistent with the numerical results.


Author(s):  
Dibakar Ghosh ◽  
Anirban Ray ◽  
A. Roy Chowdhury

Forced Lorenz system, important in modeling of monsoonlike phenomena, is analyzed for the existence of heteroclinic orbit. This is done in the light of the suggested new mechanism for the onset of chaos by Magnitskii and Sidorov (2006, “Finding Homoclinic and Heteroclinic Contours of Singular Points of Nonlinear Systems of Ordinary Differential Equations,” Diff. Eq., 39, pp. 1593–1602), where heteroclinic orbits plays important and dominant roles. The analysis is performed based on the theory laid down by Shilnikov. An analytic expression in the form of uniformly convergent series is obtained. The same orbit is also obtained numerically by a technique enunciated by Magnitskii and Sidorov, reproducing the necessary important features.


2015 ◽  
Vol 20 (2) ◽  
pp. 148-167 ◽  
Author(s):  
Fengjie Geng ◽  
Xianyi Li

A conjugate Lorenz-like system which includes only two quadratic nonlinearities is proposed in this paper. Some basic properties of this system, such as the distribution of its equilibria and their stabilities, the Lyapunov exponents, the bifurcations are investigated by some numerical and theoretical analysis. The forming mechanisms of compound structures of its new chaotic attractors obtained by merging together two simple attractors after performing one mirror operation are also presented. Furthermore, some of its other complex dynamical behaviours, which include the existence of singularly degenerate heteroclinic cycles, the existence of homoclinic and heteroclinic orbits and the dynamics at infinity, etc, are formulated in detail. In the meantime, some problems deserving further investigations are presented.


2011 ◽  
Vol 21 (09) ◽  
pp. 2695-2712 ◽  
Author(s):  
XIANYI LI ◽  
HAIJUN WANG

In this paper, a new Lorenz-type system with chaotic attractor is formulated. The structure of the chaotic attractor in this new system is found to be completely different from that in the Lorenz system or the Chen system or the Lü system, etc., which motivates us to further study in detail its complicated dynamical behaviors, such as the number of its equilibrium, the stability of the hyperbolic and nonhyperbolic equilibrium, the degenerate pitchfork bifurcation, the Hopf bifurcation and the local manifold character, etc., when its parameters vary in their space. The existence or nonexistence of homoclinic and heteroclinic orbits of this system is also rigorously proved. Numerical simulation evidences are also presented to examine the corresponding theoretical analytical results.


Sign in / Sign up

Export Citation Format

Share Document