Braid lift representations of Artin's Braid Group

2000 ◽  
Vol 09 (08) ◽  
pp. 1005-1009
Author(s):  
Reinhard Häring-Oldenburg

We recast the braid-lift representation of Contantinescu, Lüdde and Toppan in the language of B-type braid theory. Composing with finite dimensional representations of these braid groups we obtain various sequences of finite dimensional multi-parameter representations.

2015 ◽  
Vol 24 (13) ◽  
pp. 1541005 ◽  
Author(s):  
Denis A. Fedoseev ◽  
Vassily O. Manturov ◽  
Zhiyun Cheng

In this paper, we introduce [Formula: see text]-braids and, more generally, [Formula: see text]-braids for an arbitrary group [Formula: see text]. They form a natural group-theoretic counterpart of [Formula: see text]-knots, see [V. O. Manturov; Reidemeister moves and groups, preprint (2014), arXiv:1412.8691]. The underlying idea used in the construction of these objects — decoration of crossings with some additional information — generalizes an important notion of parity introduced by the second author (see [V. O. Manturov, Parity in knot theory, Sb. Math. 201(5) (2010) 693–733]) to different combinatorically geometric theories, such as knot theory, braid theory and others. These objects act as natural enhancements of classical (Artin) braid groups. The notion of dotted braid group is introduced: classical (Artin) braid groups live inside dotted braid groups as those elements having presentation with no dots on the strands. The paper is concluded by a list of unsolved problems.


2018 ◽  
Vol 27 (06) ◽  
pp. 1850043 ◽  
Author(s):  
Paul P. Gustafson

We show that any twisted Dijkgraaf–Witten representation of a mapping class group of an orientable, compact surface with boundary has finite image. This generalizes work of Etingof et al. showing that the braid group images are finite [P. Etingof, E. C. Rowell and S. Witherspoon, Braid group representations from twisted quantum doubles of finite groups, Pacific J. Math. 234 (2008)(1) 33–42]. In particular, our result answers their question regarding finiteness of images of arbitrary mapping class group representations in the affirmative. Our approach is to translate the problem into manipulation of colored graphs embedded in the given surface. To do this translation, we use the fact that any twisted Dijkgraaf–Witten representation associated to a finite group [Formula: see text] and 3-cocycle [Formula: see text] is isomorphic to a Turaev–Viro–Barrett–Westbury (TVBW) representation associated to the spherical fusion category [Formula: see text] of twisted [Formula: see text]-graded vector spaces. The representation space for this TVBW representation is canonically isomorphic to a vector space of [Formula: see text]-colored graphs embedded in the surface [A. Kirillov, String-net model of Turaev-Viro invariants, Preprint (2011), arXiv:1106.6033 ]. By analyzing the action of the Birman generators [J. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969) 213–242] on a finite spanning set of colored graphs, we find that the mapping class group acts by permutations on a slightly larger finite spanning set. This implies that the representation has finite image.


2008 ◽  
Vol 17 (01) ◽  
pp. 47-53 ◽  
Author(s):  
PING ZHANG

It is shown that for the braid group Bn(M) on a closed surface M of nonnegative Euler characteristic, Out (Bn(M)) is isomorphic to a group extension of the group of central automorphisms of Bn(M) by the extended mapping class group of M, with an explicit and complete description of Aut (Bn(S2)), Aut (Bn(P2)), Out (Bn(S2)) and Out (Bn(P2)).


Author(s):  
Anthony Genevois

In this paper, we initiate a geometric study of graph braid groups. More precisely, by applying the formalism of special colorings introduced in a previous paper, we determine precisely when a graph braid group is Gromov-hyperbolic, toral relatively hyperbolic and acylindrically hyperbolic.


2020 ◽  
Vol 29 (01) ◽  
pp. 1950097
Author(s):  
Jacob Mostovoy ◽  
Christopher Roque-Márquez

The group of planar (or flat) pure braids on [Formula: see text] strands, also known as the pure twin group, is the fundamental group of the configuration space [Formula: see text] of [Formula: see text] labeled points in [Formula: see text] no three of which coincide. The planar pure braid groups on 3, 4 and 5 strands are free. In this note, we describe the planar pure braid group on 6 strands: it is a free product of the free group on 71 generators and 20 copies of the free abelian group of rank two.


1991 ◽  
Vol 01 (02) ◽  
pp. 201-205 ◽  
Author(s):  
MARCUS BRAZIL

It is shown that for all n, the braid group on n strings, Bn, has rational growth with respect to a certain set of elements of the group which generate it as a monoid. In particular, the precise growth function for B4 is calculated.


2005 ◽  
Vol 14 (08) ◽  
pp. 1087-1098 ◽  
Author(s):  
VALERIJ G. BARDAKOV

We construct a linear representation of the group IA (Fn) of IA-automorphisms of a free group Fn, an extension of the Gassner representation of the pure braid group Pn. Although the problem of faithfulness of the Gassner representation is still open for n > 3, we prove that the restriction of our representation to the group of basis conjugating automorphisms Cbn contains a non-trivial kernel even if n = 2. We construct also an extension of the Burau representation to the group of conjugating automorphisms Cn. This representation is not faithful for n ≥ 2.


Sign in / Sign up

Export Citation Format

Share Document