TWO-DIMENSIONAL TOPOLOGICAL QUANTUM FIELD THEORIES AND FROBENIUS ALGEBRAS

1996 ◽  
Vol 05 (05) ◽  
pp. 569-587 ◽  
Author(s):  
LOWELL ABRAMS

We characterize Frobenius algebras A as algebras having a comultiplication which is a map of A-modules. This characterization allows a simple demonstration of the compatibility of Frobenius algebra structure with direct sums. We then classify the indecomposable Frobenius algebras as being either “annihilator algebras” — algebras whose socle is a principal ideal — or field extensions. The relationship between two-dimensional topological quantum field theories and Frobenius algebras is then formulated as an equivalence of categories. The proof hinges on our new characterization of Frobenius algebras. These results together provide a classification of the indecomposable two-dimensional topological quantum field theories.

2007 ◽  
Vol 16 (09) ◽  
pp. 1121-1163 ◽  
Author(s):  
AARON D. LAUDA ◽  
HENDRYK PFEIFFER

We present a state sum construction of two-dimensional extended Topological Quantum Field Theories (TQFTs), so-called open-closed TQFTs, which generalizes the state sum of Fukuma–Hosono–Kawai from triangulations of conventional two-dimensional cobordisms to those of open-closed cobordisms, i.e. smooth compact oriented 2-manifolds with corners that have a particular global structure. This construction reveals the topological interpretation of the associative algebra on which the state sum is based, as the vector space that the TQFT assigns to the unit interval. Extending the notion of a two-dimensional TQFT from cobordisms to suitable manifolds with corners therefore makes the relationship between the global description of the TQFT in terms of a functor into the category of vector spaces and the local description in terms of a state sum fully transparent. We also illustrate the state sum construction of an open-closed TQFT with a finite set of D-branes using the example of the groupoid algebra of a finite groupoid.


2017 ◽  
Vol 32 (03) ◽  
pp. 1730003 ◽  
Author(s):  
Junya Yagi

This is a brief review of my work on the correspondence between four-dimensional [Formula: see text] supersymmetric field theories realized by brane tilings and two-dimensional integrable lattice models. I explain how to construct integrable lattice models from extended operators in partially topological quantum field theories, and elucidate the correspondence as an application of this construction.


2017 ◽  
Vol 26 (04) ◽  
pp. 1750014
Author(s):  
Gathoni Kamau-Devers ◽  
Gail Jardine ◽  
David Yetter

We derive a general state sum construction for 2D topological quantum field theories (TQFTs) with source defects on oriented curves, extending the state-sum construction from special symmetric Frobenius algebra for 2D TQFTs without defects (cf. Lauda and Pfeiffer [State-sum construction of two-dimensional open-closed topological quantum field theories, J. Knot Theory Ramifications 16 (2007) 1121–1163, doi: 10.1142/S0218216507005725]). From the extended Pachner moves (Crane and Yetter [Moves on filtered PL manifolds and stratified PL spaces, arXiv:1404.3142 ]), we derive equations that we subsequently translate into string diagrams so that we can easily observe their properties. As in Dougherty, Park and Yetter [On 2-dimensional Dijkgraaf–Witten theory with defects, to appear in J. Knots Theory Ramifications], we require that triangulations be flaglike, meaning that each simplex of the triangulation is either disjoint from the defect curve, or intersects it in a closed face, and that the extended Pachner moves preserve flaglikeness.


1992 ◽  
Vol 07 (02) ◽  
pp. 209-234 ◽  
Author(s):  
J. GAMBOA

Topological quantum field theories and fractional statistics are both defined in multiply connected manifolds. We study the relationship between both theories in 2 + 1 dimensions and we show that, due to the multiply-connected character of the manifold, the propagator for any quantum (field) theory always contains a first order pole that can be identified with a physical excitation with fractional spin. The article starts by reviewing the definition of general covariance in the Hamiltonian formalism, the gauge-fixing problem and the quantization following the lines of Batalin, Fradkin and Vilkovisky. The BRST–BFV quantization is reviewed in order to understand the topological approach proposed here.


2004 ◽  
Vol 19 (14) ◽  
pp. 2339-2353 ◽  
Author(s):  
ÖMER F. DAYI

A general solution of the Batalin–Vilkovisky master equation was formulated in terms of generalized fields. Recently, a superfields approach of obtaining solutions of the Batalin–Vilkovisky master equation is also established. Superfields formalism is usually applied to topological quantum field theories. However, generalized fields method is suitable to find solutions of the Batalin–Vilkovisky master equation either for topological quantum field theories or the usual gauge theories like Yang–Mills theory. We show that by truncating some components of superfields with appropriate actions, generalized fields formalism of the usual gauge theories result. We demonstrate that for some topological quantum field theories and the relativistic particle both of the methods possess the same field contents and yield similar results. Inspired by the observed relations, we give the solution of the BV master equation for on-shell N=1 supersymmetric Yang–Mills theory utilizing superfields.


Sign in / Sign up

Export Citation Format

Share Document