TWO-DIMENSIONAL TOPOLOGICAL QUANTUM FIELD THEORIES AND FROBENIUS ALGEBRAS
We characterize Frobenius algebras A as algebras having a comultiplication which is a map of A-modules. This characterization allows a simple demonstration of the compatibility of Frobenius algebra structure with direct sums. We then classify the indecomposable Frobenius algebras as being either “annihilator algebras” — algebras whose socle is a principal ideal — or field extensions. The relationship between two-dimensional topological quantum field theories and Frobenius algebras is then formulated as an equivalence of categories. The proof hinges on our new characterization of Frobenius algebras. These results together provide a classification of the indecomposable two-dimensional topological quantum field theories.