scholarly journals DARK ENERGY MODELS WITH VARIABLE EQUATION OF STATE PARAMETER

2010 ◽  
Vol 19 (04) ◽  
pp. 475-487 ◽  
Author(s):  
UTPAL MUKHOPADHYAY ◽  
SAIBAL RAY ◽  
FAROOK RAHAMAN

Two phenomenological variable Λ models, viz.Λ ~ (ȧ/a)2 and Λ ~ ρ, have been studied under the assumption that the equation of state parameter ω is a function of time. The selected Λ models are found to be equivalent both in four and five dimensions. The possibility of signature flip of the deceleration parameter is also shown.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
M. Sharif ◽  
M. Zubair

We develop the connection off(R)theory with new agegraphic and holographic dark energy models. The functionf(R)is reconstructed regarding thef(R)theory as an effective description for these dark energy models. We show the future evolution offand conclude that these functions represent distinct pictures of cosmological eras. The cosmological parameters such as equation of state parameter, deceleration parameter, statefinder diagnostic, andw−w′analysis are investigated which assure the evolutionary paradigm off.


2010 ◽  
Vol 50 (3) ◽  
pp. 871-881 ◽  
Author(s):  
Anil Kumar Yadav ◽  
Farook Rahaman ◽  
Saibal Ray

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
M. Younas ◽  
Abdul Jawad ◽  
Saba Qummer ◽  
H. Moradpour ◽  
Shamaila Rani

Recently, Tsallis, Rényi, and Sharma-Mittal entropies have widely been used to study the gravitational and cosmological setups. We consider a flat FRW universe with linear interaction between dark energy and dark matter. We discuss the dark energy models using Tsallis, Rényi, and Sharma-Mittal entropies in the framework of Chern-Simons modified gravity. We explore various cosmological parameters (equation of state parameter, squared sound of speed ) and cosmological plane (ωd-ωd′, where ωd′ is the evolutionary equation of state parameter). It is observed that the equation of state parameter gives quintessence-like nature of the universe in most of the cases. Also, the squared speed of sound shows stability of Tsallis and Rényi dark energy model but unstable behavior for Sharma-Mittal dark energy model. The ωd-ωd′ plane represents the thawing region for all dark energy models.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950184
Author(s):  
M. Umair Shahzad ◽  
Nadeem Azhar ◽  
Abdul Jawad ◽  
Shamaila Rani

The reconstruction scenario of well-established dark energy models such as pilgrim dark energy model and generalized ghost dark energy with Hubble horizon and [Formula: see text] models is being considered. We have established [Formula: see text] models and analyzed their viability through equation of state parameter and [Formula: see text] (where prime denotes derivative with respect to [Formula: see text]) plane. The equation of state parameter evolutes the universe in three different phases such as quintessence, vacuum and phantom. However, the [Formula: see text] plane also describes the thawing as well as freezing region of the universe. The recent observational data also favor our results.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750136 ◽  
Author(s):  
Abdulla Al Mamon

This work is the reconstruction of the interaction rate of holographic dark energy whose infrared cut-off scale is set by the Hubble length. We have reconstructed the interaction rate between dark matter and the holographic dark energy for a specific parameterization of the effective equation-of-state parameter. We have obtained observational constraints on the model parameters using the latest type Ia supernova (SNIa), baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) radiation datasets. We have found that for the present model, the interaction rate increases with expansion and remains positive throughout the evolution. For a comprehensive analysis, we have also compared the reconstructed results of the interaction rate with other well-known holographic dark energy models. The nature of the deceleration parameter, the statefinder parameters and the dark energy equation-of-state parameter have also been studied for the present model. It has been found that the deceleration parameter favors the past decelerated and recent accelerated expansion phase of the universe. It has also been found that the dark energy equation-of-state parameter shows a phantom nature at the present epoch.


2016 ◽  
Vol 71 (10) ◽  
pp. 949-960
Author(s):  
Surajit Chattopadhyay ◽  
Antonio Pasqua ◽  
Irina Radinschi

AbstractThe present paper reports a study on accreting tachyon, Dirac-Born-Infeld essence and h-essence scalar field models of dark energy onto Morris-Thorne wormhole. Using three different parameterisation schemes and taking $H\, = \,{H_0}\, + \,{{{H_1}} \over t}$, we have derived the mass of the wormhole for all of the three parameterisation schemes that are able to get hold of both quintessence and phantom behaviour. With suitable choice of parameters, we observed that accreting scalar field dark energy models are increasing the mass of the wormhole in the phantom phase and the mass is decreasing in the quintessence phase. Finally, we have considered accretion with power law form of scale factor and without any parameterisation scheme for the equation of state parameter and observed the fact that phantom-type dark energy supports the existence of wormholes.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Abdul Jawad ◽  
Sadaf Butt ◽  
Shamaila Rani ◽  
Khadija Asif

AbstractIn the framework of fractal universe, the unified models of dark energy and dark matter are being presented with the background of homogenous and isotropic FLRW geometry. The aspects of fractal cosmology helps in better understanding of the universe in different dimensions. Relationship between the squared speed of the sound and the equation of state parameter is the key feature of these models. We have used constant as well as variable forms of speed of sound and express it as a function of equation of state parameter. By utilizing the four different forms of speed of sound, we construct the energy densities and pressures for these models and then various cosmological parameters like hubble parameter, EoS parameter, deceleration parameter and Om- diagnostic are investigated. Graphical analysis of these parameters show that in most of the cases EoS parameters and trajectories of Om-diagnostic corresponds to the quintessence like nature of the universe and the deceleration parameters represent accelerated and decelerated phase. In the end, we remark that cosmological analysis of these models indicates that these models correspond to different well known dark energy models.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Dalibor Perković ◽  
Hrvoje Štefančić

Abstract Parametrizations of equation of state parameter as a function of the scale factor or redshift are frequently used in dark energy modeling. The question investigated in this paper is if parametrizations proposed in the literature are compatible with the dark energy being a barotropic fluid. The test of this compatibility is based on the functional form of the speed of sound squared, which for barotropic fluid dark energy follows directly from the function for the Equation of state parameter. The requirement that the speed of sound squared should be between 0 and speed of light squared provides constraints on model parameters using analytical and numerical methods. It is found that this fundamental requirement eliminates a large number of parametrizations as barotropic fluid dark energy models and puts strong constraints on parameters of other dark energy parametrizations.


2008 ◽  
Vol 17 (12) ◽  
pp. 2325-2335 ◽  
Author(s):  
JIE REN ◽  
XIN-HE MENG

The tachyon field in cosmology is studied in this paper by applying the generating function method to obtain exact solutions. The equation of state parameter of the tachyon field is [Formula: see text], which can be expressed as a function in terms of the redshift z. Based on these solutions, we propose some tachyon-inspired dark energy models to explore the properties of the corresponding cosmological evolution. The explicit relations between the Hubble parameter and redshift enable us to test the models with SNe Ia data sets easily. In this paper, we employ the SNe Ia data with the parameter [Formula: see text] measured from the SDSS and the shift parameter [Formula: see text] from WMAP observations to constrain the parameters in our models.


Sign in / Sign up

Export Citation Format

Share Document