scholarly journals A quantum Rosetta Stone for the information paradox

2014 ◽  
Vol 23 (12) ◽  
pp. 1442013 ◽  
Author(s):  
Leopoldo A. Pando Zayas

The black hole information loss paradox epitomizes the contradictions between general relativity and quantum field theory. The AdS/conformal field theory (CFT) correspondence provides an implicit answer for the information loss paradox in black hole physics by equating a gravity theory with an explicitly unitary field theory. Gravitational collapse in asymptotically AdS spacetimes is generically turbulent. Given that the mechanism to read out the information about correlations functions in the field theory side is plagued by deterministic classical chaos, we argue that quantum chaos might provide the true Rosetta Stone for answering the information paradox in the context of the AdS/CFT correspondence.

Author(s):  
Malcolm J. Perry

We start by looking at why we believe that black holes have entropy. According to Boltzmann, the entropy is a measure of the number of microstates of a system. We suggest here that the entropy arises from a holographic conformal field theory on the black hole horizon. Finally, we discuss some of the implications for the information paradox.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Hsu-Wen Chiang ◽  
Yu-Hsien Kung ◽  
Pisin Chen

Abstract One interesting proposal to solve the black hole information loss paradox without modifying either general relativity or quantum field theory, is the soft hair, a diffeomorphism charge that records the anisotropic radiation in the asymptotic region. This proposal, however, has been challenged, given that away from the source the soft hair behaves as a coordinate transformation that forms an Abelian group, thus unable to store any information. To maintain the spirit of the soft hair but circumvent these obstacles, we consider Hawking radiation as a probe sensitive to the entire history of the black hole evaporation, where the soft hairs on the horizon are induced by the absorption of a null anisotropic flow, generalizing the shock wave considered in [1, 2]. To do so we introduce two different time-dependent extensions of the diffeomorphism associated with the soft hair, where one is the backreaction of the anisotropic null flow, and the other is a coordinate transformation that produces the Unruh effect and a Doppler shift to the Hawking spectrum. Together, they form an exact BMS charge generator on the entire manifold that allows the nonperturbative analysis of the black hole horizon, whose surface gravity, i.e. the Hawking temperature, is found to be modified. The modification depends on an exponential average of the anisotropy of the null flow with a decay rate of 4M, suggesting the emergence of a new 2-D degree of freedom on the horizon, which could be a way out of the information loss paradox.


2011 ◽  
Vol 26 (22) ◽  
pp. 1601-1611 ◽  
Author(s):  
JØRGEN RASMUSSEN

We consider Kerr–Newman–AdS–dS black holes near extremality and work out the near-horizon geometry of these near-extremal black holes. We identify the exact U (1)L× U (1)R isometries of the near-horizon geometry and provide boundary conditions enhancing them to a pair of commuting Virasoro algebras. The conserved charges of the corresponding asymptotic symmetries are found to be well-defined and nonvanishing and to yield central charges cL≠0 and cR = 0. The Cardy formula subsequently reproduces the Bekenstein–Hawking entropy of the black hole. This suggests that the near-extremal Kerr–Newman–AdS–dS black hole is holographically dual to a non-chiral two-dimensional conformal field theory.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1387
Author(s):  
Ayan Mitra ◽  
Pritam Chattopadhyay ◽  
Goutam Paul ◽  
Vasilios Zarikas

Various techniques to tackle the black hole information paradox have been proposed. A new way out to tackle the paradox is via the use of a pseudo-density operator. This approach has successfully dealt with the problem with a two-qubit entangle system for a single black hole. In this paper, we present the interaction with a binary black hole system by using an arrangement of the three-qubit system of Greenberger–Horne–Zeilinger (GHZ) state. We show that our results are in excellent agreement with the theoretical value. We have also studied the interaction between the two black holes by considering the correlation between the qubits in the binary black hole system. The results depict a complete agreement with the proposed model. In addition to the verification, we also propose how modern detection of gravitational waves can be used on our optical setup as an input source, thus bridging the gap with the gravitational wave’s observational resources in terms of studying black hole properties with respect to quantum information and entanglement.


Author(s):  
Milad Hajebrahimi ◽  
Kourosh Nozari

Abstract In the language of black hole physics, Hawking radiation is one of the most controversial subjects about which there exist lots of puzzles, including the information loss problem and the question of whether this radiation is thermal or not. In this situation, a possible way to face these problems is to bring quantum effects into play, also taking into account self-gravitational effects in the scenario. We consider a quantum-corrected form of the Schwarzschild black hole inspired by the pioneering work of Kazakov and Solodukhin to modify the famous Parikh–Wilczek tunneling process for Hawking radiation. We prove that in this framework the radiation is not thermal, with a correlation function more effective than the Parikh–Wilczek result, and the information loss problem can be addressed more successfully. Also, we realize that quantum correction affects things in the same way as an electric charge. So, it seems that quantum correction in this framework has something to do with the electric charge.


2014 ◽  
Vol 92 (11) ◽  
pp. 1481-1484 ◽  
Author(s):  
J. Naji ◽  
S. Heydari ◽  
A. Amjadi

In this paper, we consider a charged black hole in three dimensions with a scalar charge and discuss energy loss of a heavy particle moving near the black hole horizon. This analysis is useful when anti-de Sitter space – conformal field theory correspondence is applied. We find that an electric charge of a black hole increases the drag force but a scalar charge decreases it.


Sign in / Sign up

Export Citation Format

Share Document