Stability of thin-shell wormholes from noncommutative BTZ black hole
In this paper, we construct thin-shell wormholes in (2 + 1)-dimensions from noncommutative BTZ black hole by applying the cut-and-paste procedure implemented by Visser. We calculate the surface stresses localized at the wormhole throat by using the Darmois–Israel formalism and we find that the wormholes are supported by matter violating the energy conditions. In order to explore the dynamical analysis of the wormhole throat, we consider that the matter at the shell is supported by dark energy equation of state (EoS) p = ωρ with ω < 0. The stability analysis is carried out of these wormholes to linearized spherically symmetric perturbations around static solutions. Preserving the symmetry we also consider the linearized radial perturbation around static solution to investigate the stability of wormholes which was explored by the parameter β (speed of sound).