Schrödinger equation in a general curved spacetime geometry
In this paper, we consider relativistic quantum field theory in the presence of an external electric potential in a general curved spacetime geometry. We utilize Fermi coordinates adapted to the time-like geodesic to describe the low-energy physics in the laboratory and calculate the leading correction due to the curvature of the spacetime geometry to the Schrödinger equation. We then compute the nonvanishing probability of excitation for a hydrogen atom that falls in or is scattered by a general Schwarzschild black hole. The photon emitted from the excited state by spontaneous emission extracts energy from the black hole, increases the decay rate of the black hole and adds to the information paradox.