Determination of single neutron spectroscopic factor of doubly shell closed, neutron shell closed and neutron-rich nuclei through (d,p) reaction
The spectroscopic factor (SF) of doubly-magic nuclei, neutron shell closed and neutron-rich nuclei has been determined through ([Formula: see text], [Formula: see text]) reaction in the projectile energy range from 3 to 26[Formula: see text]MeV. The theoretical angular differential cross-sections of ([Formula: see text], [Formula: see text] reactions in scattering center-of-mass angles from [Formula: see text] to [Formula: see text] have been calculated using FRESCO and NRV-DWUCK5 codes. By comparing the theoretical angular differential cross-sections with available experimental angular differential cross-sections, the values of SF have been determined. The exponential increase of SF as a function of neutron separation energy normalized by spin of the recoil nuclei has been shown for the first time for doubly-magic nuclei. The similar type of trend has also been observed for neutron-rich as well as neutron shell closed nuclei as a function of neutron separation energy normalized by asymmetric factor of recoil nucleus. More experimental data are required to verify the trend predicted by this investigation.