REDEFINING FAILURE RATE FUNCTION FOR DISCRETE DISTRIBUTIONS
For discrete distribution with reliability function R(k), k = 1, 2,…,[R(k - 1) - R(k)]/R(k - 1) has been used as the definition of the failure rate function in the literature. However, this is different from that of the continuous case. This discrete version has the interpretation of a probability while it is known that a failure rate is not a probability in the continuous case. This discrete failure rate is bounded, and hence cannot be convex, e.g., it cannot grow linearly. It is not additive for series system while the additivity for series system is a common understanding in practice. In the paper, another definition of discrete failure rate function as In[R(k - 1)/R(k)] is introduced, and the above-mentioned problems are resolved. On the other hand, it is shown that the two failure rate definitions have the same monotonicity property. That is, if one is increasing/decreasing, the other is also increasing/decreasing. For other aging concepts, the new failure rate definition is more appropriate. The failure rate functions according to this definition are given for a number of useful discrete reliability functions.