FINITE-DIMENSIONAL SPECIAL ODD HAMILTONIAN SUPERALGEBRAS IN PRIME CHARACTERISTIC

2009 ◽  
Vol 11 (04) ◽  
pp. 523-546 ◽  
Author(s):  
WENDE LIU ◽  
YINGHUA HE

In this paper, we study a new family of finite-dimensional simple Lie superalgebras of Cartan type over a field of characteristic p > 3, the so-called special odd Hamiltonian superalgebras. The spanning sets are first given and then the grading structures are described explicitly. Finally, the simplicity and the dimension formulas are determined. As application, using the dimension formulas, we make a comparison between the special odd Hamiltonian superalgebras and the other known families of finite-dimensional simple modular Lie superalgebras of Cartan type.

2010 ◽  
Vol 17 (03) ◽  
pp. 525-540 ◽  
Author(s):  
Xiaoning Xu ◽  
Yongzheng Zhang ◽  
Liangyun Chen

A new family of finite-dimensional modular Lie superalgebras Γ is defined. The simplicity and generators of Γ are studied and an explicit description of the derivation superalgebra of Γ is given. Moreover, it is proved that Γ is not isomorphic to any known Lie superalgebra of Cartan type.


2016 ◽  
Vol 23 (02) ◽  
pp. 347-360
Author(s):  
Liming Tang ◽  
Wende Liu

Let X be one of the finite-dimensional graded simple Lie superalgebras of Cartan type W, S, H, K, HO, KO, SHO or SKO over an algebraically closed field of characteristic p > 3. In this paper we prove that X can be generated by one element except the ones of type W, HO, KO or SKO in certain exceptional cases in which X can be generated by two elements. As a subsidiary result, we prove that certain classical Lie superalgebras or their relatives can be generated by one or two elements.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Keli Zheng ◽  
Yongzheng Zhang

This paper is concerned with the natural filtration of Lie superalgebraS(n,m)of special type over a field of prime characteristic. We first construct the modular Lie superalgebraS(n,m). Then we prove that the natural filtration ofS(n,m)is invariant under its automorphisms.


2011 ◽  
Vol 18 (02) ◽  
pp. 347-360 ◽  
Author(s):  
Li Ren ◽  
Qiang Mu ◽  
Yongzheng Zhang

A class of finite-dimensional Cartan-type Lie superalgebras H(n,m) over a field of prime characteristic is studied in this paper. We first determine the derivation superalgebra of H(n,m). Then we obtain that H(n,m) is restrictable and it is an extension of the Lie superalgebra [Formula: see text]. Finally, we prove that H(n,m) is isomorphic to a subalgebra of the restricted Hamiltonian Lie superalgebra [Formula: see text].


2015 ◽  
Vol 22 (02) ◽  
pp. 309-320
Author(s):  
Liping Sun ◽  
Wende Liu ◽  
Xiaocheng Gao ◽  
Boying Wu

Certain important results concerning p-envelopes of modular Lie algebras are generalized to the super-case. In particular, any p-envelope of the Lie algebra of a Lie superalgebra can be naturally extended to a restricted envelope of the Lie superalgebra. As an application, a theorem on the representations of Lie superalgebras is given, which is a super-version of Iwasawa's theorem in Lie algebra case. As an example, the minimal restricted envelopes are computed for three series of modular Lie superalgebras of Cartan type.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Lili Ma ◽  
Liangyun Chen

AbstractThe natural filtration of the infinite-dimensional simple modular Lie superalgebra M over a field of characteristic p > 2 is proved to be invariant under automorphisms by discussing ad-nilpotent elements. Moreover, an intrinsic property is obtained and all the infinite-dimensional simple modular Lie superalgebras M are classified up to isomorphisms. As an application, a property of automorphisms of M is given.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Zhu Wei ◽  
Qingcheng Zhang ◽  
Yongzheng Zhang ◽  
Chunyue Wang

This paper constructs a series of modules from modular Lie superalgebrasW(0∣n),S(0∣n), andK(n)over a field of prime characteristicp≠2. Cartan subalgebras, maximal vectors of these modular Lie superalgebras, can be solved. With certain properties of the positive root vectors, we obtain that the sufficient conditions of these modules are irreducibleL-modules, whereL=W(0∣n),S(0∣n), andK(n).


Sign in / Sign up

Export Citation Format

Share Document