Challenges in Sparse Image Reconstruction

Author(s):  
S. Shashi Kiran ◽  
K. V. Suresh

Handling huge amount of data from different sources more so in the images is the latest challenge. One of the solutions to this is sparse representation. The idea of sparsity has been receiving much attention recently from many researchers in the areas such as satellite image processing, signal processing, medical image processing, microscopy image processing, pattern recognition, neuroscience, seismic imaging, etc. Many algorithms have been developed for various areas of sparse representation. The main objective of this paper is to provide a comprehensive study and highlight the challenges in the area of sparse representation which will be helpful for researchers. Also, the current challenges and opportunities of applying sparsity to image reconstruction, namely, image super-resolution, image denoising and image restoration are discussed. This survey on sparse representation categorizes the existing methods into three groups: dictionary learning approach, greedy strategy approximation approach and deep learning approach.

Author(s):  
Man Sing Wong ◽  
Xiaolin Zhu ◽  
Sawaid Abbas ◽  
Coco Yin Tung Kwok ◽  
Meilian Wang

AbstractApplications of Earth-observational remote sensing are rapidly increasing over urban areas. The latest regime shift from conventional urban development to smart-city development has triggered a rise in smart innovative technologies to complement spatial and temporal information in new urban design models. Remote sensing-based Earth-observations provide critical information to close the gaps between real and virtual models of urban developments. Remote sensing, itself, has rapidly evolved since the launch of the first Earth-observation satellite, Landsat, in 1972. Technological advancements over the years have gradually improved the ground resolution of satellite images, from 80 m in the 1970s to 0.3 m in the 2020s. Apart from the ground resolution, improvements have been made in many other aspects of satellite remote sensing. Also, the method and techniques of information extraction have advanced. However, to understand the latest developments and scope of information extraction, it is important to understand background information and major techniques of image processing. This chapter briefly describes the history of optical remote sensing, the basic operation of satellite image processing, advanced methods of object extraction for modern urban designs, various applications of remote sensing in urban or peri-urban settings, and future satellite missions and directions of urban remote sensing.


2019 ◽  
Vol 9 (2) ◽  
pp. 16-22
Author(s):  
Nadya Fiqi Nurcahyani

Mangrove forests have high ecological, economic and social values ??which function to maintain shoreline stability, protect beaches and riverbanks, filter and remediate waste, and to withstand floods and waves. The facts show that mangrove damage is everywhere, even the intensity of damage and its area tends to increase significantly. Many roles of mangroves require proper management to maintain the existence of mangroves. One way to determine the area of ??mangroves is by processing Landsat 8 satellite imagery. The stages of mangrove identification are carried out by using 564 RGB band merger, then separating the mangrove and non-mangrove objects. Next step is to analyze the density of mangroves using NDVI formula. To maximize monitoring of mangrove area, an android application was created that provides information on the area and density of mangroves at several locations, namely Clungup, Bangsong Teluk Asmara and Cengkrong from 2015 to 2018.The results showed that Landsat 8 satellite imagery can be used to identify changes in the area of ??mangrove forests with good accuracy, namely in the Clungup area of ??90% and Cengkrong of 86.67%. From processing results, the mangrove area in the Clungup area has also decreased from 2015 to 2017 but has increased in 2018 so that the application provides recommendations for embroidering mangroves in 2016 to 2017 and mangrove recommendations are maintained in 2018. As for Bangsong Teluk area Asmara and Cengkrong have increased the area of ??mangroves every year so that the application provides recommendations to be maintained from 2016 to 2018.


Author(s):  
Kenji Ose ◽  
Thomas Corpetti ◽  
Laurent Demagistri

Sign in / Sign up

Export Citation Format

Share Document