Multifractal Properties of Meteorological Drought at Different Time Scales in a Tropical Location
Tropical countries, like Nigeria, depend on rainfall for agriculture, power generation, transportation and other economic activities. Drought will hinder the performance of these activities, hence, it poses a significant threat to the economy. Understanding fluctuations and structures in droughts will help in forecasting, planning and mitigating its impact on livelihoods. In this study, the multifractal properties of drought at four temporal scales were investigated over different locations across Nigeria. Drought was computed using the standardized precipitation index from monthly precipitation data from 1980 to 2010. Using multifractal detrended fluctuation analysis, meteorological drought was found to have multifractal properties at 1-, 6-, 12- and 24-month temporal scale. The generalized Hurst exponent of drought at different time-scale showed dependence on scaling exponent. Long-range correlations were found to be main source of multifractality at all temporal scales. The multifractal strength increases with increasing temporal scale except for a few locations. The range of spectrum width were found to be 0.306–0.464 and 0.596–0.993 at 1- and 24-month temporal scale, respectively. No significant trend was found in the degree of multifractality across different climatic zones of Nigeria.