Generalized Cumulative Residual Entropy of Time Series Based on Permutation Patterns
Cumulative residual entropy (CRE) has been suggested as a new measure to quantify uncertainty of nonlinear time series signals. Combined with permutation entropy and Rényi entropy, we introduce a generalized measure of CRE at multiple scales, namely generalized cumulative residual entropy (GCRE), and further propose a modification of GCRE procedure by the weighting scheme — weighted generalized cumulative residual entropy (WGCRE). The GCRE and WGCRE methods are performed on the synthetic series to study properties of parameters and verify the validity of measuring complexity of the series. After that, the GCRE and WGCRE methods are applied to the US, European and Chinese stock markets. Through data analysis and statistics comparison, the proposed methods can effectively distinguish stock markets with different characteristics.