Ore extensions of quasitriangular Hopf group coalgebras

2014 ◽  
Vol 13 (06) ◽  
pp. 1450016 ◽  
Author(s):  
Daowei Lu ◽  
Dingguo Wang

In this paper, we mainly consider some special Ore extension of quasitriangular Hopf group coalgebra, and give the necessary and sufficient conditions when the Ore extension of quasitriangular Hopf group coalgebras will preserve the same quasitriangular structure. Furthermore, in the two examples given at the end, we construct new solutions of Yang–Baxter equation of Hopf group coalgebras version.

2006 ◽  
Vol 05 (03) ◽  
pp. 287-306 ◽  
Author(s):  
ANDRÉ LEROY ◽  
JERZY MATCZUK

Necessary and sufficient conditions for an Ore extension S = R[x;σ,δ] to be a PI ring are given in the case σ is an injective endomorphism of a semiprime ring R satisfying the ACC on annihilators. Also, for an arbitrary endomorphism τ of R, a characterization of Ore extensions R[x;τ] which are PI rings is given, provided the coefficient ring R is noetherian.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250192 ◽  
Author(s):  
JOHAN ÖINERT ◽  
JOHAN RICHTER ◽  
SERGEI D. SILVESTROV

The aim of this paper is to describe necessary and sufficient conditions for simplicity of Ore extension rings, with an emphasis on differential polynomial rings. We show that a differential polynomial ring, R[x; id R, δ], is simple if and only if its center is a field and R is δ-simple. When R is commutative we note that the centralizer of R in R[x; σ, δ] is a maximal commutative subring containing R and, in the case when σ = id R, we show that it intersects every nonzero ideal of R[x; id R, δ] nontrivially. Using this we show that if R is δ-simple and maximal commutative in R[x; id R, δ], then R[x; id R, δ] is simple. We also show that under some conditions on R the converse holds.


Author(s):  
Mamta Balodi ◽  
Sumit Kumar Upadhyay

Here we study the simplicity of an iterated Ore extension of a unital ring [Formula: see text]. We give necessary conditions for the simplicity of an iterated Ore extension when [Formula: see text] is a commutative domain. A class of iterated Ore extensions, namely the differential polynomial ring [Formula: see text] in [Formula: see text]-variables is considered. The conditions for a commutative domain [Formula: see text] of characteristic zero to be a maximal commutative subring of its differential polynomial ring [Formula: see text] are given, and the necessary and sufficient conditions for [Formula: see text] to be simple are also found.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Medine Yeşilkayagil ◽  
Feyzi Başar

Let 0 < s < ?. In this study, we introduce the double sequence space Rqt(Ls) as the domain of four dimensional Riesz mean Rqt in the space Ls of absolutely s-summable double sequences. Furthermore, we show that Rqt(Ls) is a Banach space and a barrelled space for 1 ? s < 1 and is not a barrelled space for 0 < s < 1. We determine the ?- and ?(?)-duals of the space Ls for 0 < s ? 1 and ?(bp)-dual of the space Rqt(Ls) for 1 < s < 1, where ? ? {p, bp, r}. Finally, we characterize the classes (Ls:Mu), (Ls:Cbp), (Rqt(Ls) : Mu) and (Rqt(Ls):Cbp) of four dimensional matrices in the cases both 0 < s < 1 and 1 ? s < 1 together with corollaries some of them give the necessary and sufficient conditions on a four dimensional matrix in order to transform a Riesz double sequence space into another Riesz double sequence space.


Sign in / Sign up

Export Citation Format

Share Document