Projectivity and flatness over the endomorphism ring of a finitely generated quasi-Poisson comodule
2014 ◽
Vol 13
(08)
◽
pp. 1450060
Keyword(s):
Let k be a field of characteristic 0, A a noncommutative Poisson k-algebra, U(A) the ordinary enveloping algebra of A, 𝒞 a quasi-Poisson A-coring that is projective as a left A-module, *𝒞 the left dual ring of 𝒞 (it is a right U(A)-module algebra) and Λ a right quasi-Poisson 𝒞-comodule that is finitely generated as a right U(A)#*𝒞-module. The vector space End 𝒫,𝒞(Λ) of right quasi-Poisson 𝒞-colinear maps from Λ to Λ is a ring. We give necessary and sufficient conditions for projectivity and flatness of a module over End 𝒫,𝒞(Λ). If 𝒞 contains a fixed quasi-Poisson grouplike element, we can replace Λ with A.
1988 ◽
Vol 31
(3)
◽
pp. 374-379
◽
2004 ◽
Vol 2004
(30)
◽
pp. 1581-1588
2016 ◽
Vol 15
(03)
◽
pp. 1650049
◽
1979 ◽
Vol 28
(3)
◽
pp. 335-345
◽
1971 ◽
Vol 12
(2)
◽
pp. 187-192
2018 ◽
Vol 17
(02)
◽
pp. 1850023
◽
2004 ◽
Vol 03
(02)
◽
pp. 207-217
◽
1951 ◽
Vol 47
(1)
◽
pp. 1-6
◽
2000 ◽
Vol 10
(06)
◽
pp. 739-749
◽
1981 ◽
Vol 1
(2)
◽
pp. 209-221
◽