Investigation on Cutting Forces and Surface Finish in Mechanical Micro Milling of Zr-Based Bulk Metallic Glass
Precision micro-component fabrication demands suitable manufacturing processes that ensure making of parts with good form and finish. Mechanical micro milling represents a flexible and powerful process that exhibits enhanced capability to create micro features. Bulk metallic glass (BMG) represents a young class of amorphous alloy material with superior mechanical and physical properties and finds appreciable micro scale applications like biomedical devices and implants, micro parts for sport items and various other micro- components. In the present work, an attempt has been made to analyze the influence of the cutting parameters like spindle speed, feed per tooth and axial depth of cut on the machinability of BMG, in mechanical micro-milling process. The micro-milling process performances have been evaluated concerning to cutting forces and surface roughness generated, by making full slots on the workpiece with solid carbide end mill cutters. The paper presents micro-machining results for bulk metallic glass machined with commercial micro-milling tool at low cutting velocity regime. Response surface methodology (RSM) has been employed for process modeling and subsequent analysis to study the influence of the combination of cutting parameters on responses within the selected domain of cutting parameters. It has been found that the effect of axial depth of cut on the cutting force components is remarkably significant. Cutting force components increases with the increase in axial depth of cut and decreases with increase in spindle speed. At low feed rate, cutting force in the feed direction (Fx, i.e., cutting force along x-direction) increases with a decrease in feed rate. This increase of force could be due to the possible ploughing effect. A similar pattern of variation has been observed with cutting force component in cross-feed direction (Fy) also. It has been found that effect of feed per tooth on the roughness parameter Ra is remarkably significant. Surface roughness increases with feed per tooth. Axial depth of cut does not contribute much to the surface roughness. Surface roughness decrease with the increase of spindle speed.