Generalized Differential Transform Method for Solving Discrete Complex Cubic Ginzburg–Landau Equation

2015 ◽  
Vol 12 (03) ◽  
pp. 1550017 ◽  
Author(s):  
H. Aminikhah ◽  
P. Dehghan

In this paper, generalized differential transform method (GDTM) is applied to solve discrete complex cubic Ginzburg–Landau (DCCGL) equation which is a famous nonlinear difference-differential equation (NDDE). GDTM approximate solutions for various discrete soliton solutions of DCCGL such as discrete bright soliton, discrete dark soliton, and discrete alternating soliton are obtained. Also this method is successfully employed to obtain approximate solution for dark solitary wave solution of integrable discrete nonlinear Schrödinger (IDNS) equation. Numerical results compared with their corresponding numerical and analytical solutions to show the efficiency and high accuracy of the considered method.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shaher Momani ◽  
Asad Freihat ◽  
Mohammed AL-Smadi

The multistep generalized differential transform method is applied to solve the fractional-order multiple chaotic FitzHugh-Nagumo (FHN) neurons model. The algorithm is illustrated by studying the dynamics of three coupled chaotic FHN neurons equations with different gap junctions under external electrical stimulation. The fractional derivatives are described in the Caputo sense. Furthermore, we present figurative comparisons between the proposed scheme and the classical fourth-order Runge-Kutta method to demonstrate the accuracy and applicability of this method. The graphical results reveal that only few terms are required to deduce the approximate solutions which are found to be accurate and efficient.


2011 ◽  
Vol 347-353 ◽  
pp. 463-466
Author(s):  
Xue Hui Chen ◽  
Liang Wei ◽  
Lian Cun Zheng ◽  
Xin Xin Zhang

The generalized differential transform method is implemented for solving time-fractional partial differential equations in fluid mechanics. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor’s formula. Results obtained by using the scheme presented here agree well with the numerical results presented elsewhere. The results reveal the method is feasible and convenient for handling approximate solutions of time-fractional partial differential equations.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 157-164
Author(s):  
Ahmad Haghbin ◽  
Hossein Jafari ◽  
Pranay Goswami ◽  
Morganathan Ariyan

In this paper fractional differential transform method is implemented for modelling and solving system of the time fractional chemical engineering equations. In this method the solution of the chemical reaction, reactor, and concentration equations are considered as convergent series with easily computable components. Also, the obtained solutions have simplicity procedure, high accuracy and efficient.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 157-164
Author(s):  
Ahmad Haghbin ◽  
Hossein Jafari ◽  
Pranay Goswami ◽  
Morganathan Ariyan

In this paper fractional differential transform method is implemented for modelling and solving system of the time fractional chemical engineering equations. In this method the solution of the chemical reaction, reactor, and concentration equations are considered as convergent series with easily computable components. Also, the obtained solutions have simplicity procedure, high accuracy and efficient.


Sign in / Sign up

Export Citation Format

Share Document