A Variant of Projection-Regularization Method for Ill-Posed Linear Operator Equations

Author(s):  
Bechouat Tahar ◽  
Boussetila Nadjib ◽  
Rebbani Faouzia

In this paper, we report on a strategy for computing the numerical approximate solution for a class of ill-posed operator equations in Hilbert spaces: [Formula: see text]. This approach is a combination of Tikhonov regularization method and the finite rank approximation of [Formula: see text]. Finally, numerical results are given to show the effectiveness of this method.

Author(s):  
Vladimir Vasin ◽  
◽  
Vladimir Belyaev

We investigate a linear operator equation of the first kind that is ill-posed in the Hadamard sence. It is assumed that its solution is representable as a sum of smooth and discontinuous components. To construct a stable approximate solutions, we use the modified Tikhonov method with the stabilizing functional as a sum of the Lebesgue norm for the smooth component and a smoothed BV-norm for the discontinuous component. Theorems of exis- tence, uniqueness, and convergence both the regularized solutions and its finite-dimentional approximations are proved. Also, results of numerical experiments are presented.


2010 ◽  
Vol 15 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Uno Hämarik ◽  
Reimo Palm ◽  
Toomas Raus

We consider regularization of linear ill‐posed problem Au = f with noisy data fδ, ¦fδ - f¦≤ δ . The approximate solution is computed as the extrapolated Tikhonov approximation, which is a linear combination of n ≥ 2 Tikhonov approximations with different parameters. If the solution u* belongs to R((A*A) n ), then the maximal guaranteed accuracy of Tikhonov approximation is O(δ 2/3) versus accuracy O(δ 2n/(2n+1)) of corresponding extrapolated approximation. We propose several rules for choice of the regularization parameter, some of these are also good in case of moderate over‐ and underestimation of the noise level. Numerical examples are given.


2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


Author(s):  
Heinz W. Engl ◽  
Martin Hanke ◽  
Andreas Neubauer

2008 ◽  
Vol 8 (1) ◽  
pp. 86-98 ◽  
Author(s):  
S.G. SOLODKY ◽  
A. MOSENTSOVA

Abstract The problem of approximate solution of severely ill-posed problems given in the form of linear operator equations of the first kind with approximately known right-hand sides was considered. We have studied a strategy for solving this type of problems, which consists in combinating of Morozov’s discrepancy principle and a finite-dimensional version of the Tikhonov regularization. It is shown that this combination provides an optimal order of accuracy on source sets


2013 ◽  
Vol 416-417 ◽  
pp. 1393-1398
Author(s):  
Chao Zhong Ma ◽  
Yong Wei Gu ◽  
Ji Fu ◽  
Yuan Lu Du ◽  
Qing Ming Gui

In a large number of measurement data processing, the ill-posed problem is widespread. For such problems, this paper introduces the solution of ill-posed problem of the unity of expression and Tikhonov regularization method, and then to re-collinearity diagnostics and metrics based on proposed based on complex collinearity diagnostics and the metric regularization method is given regularization matrix selection methods and regularization parameter determination formulas. Finally, it uses a simulation example to verify the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document