TOPOLOGICAL STRINGS ON NONCOMMUTATIVE MANIFOLDS
We identify a deformation of the N=2 supersymmetric sigma model on a Calabi–Yau manifold X which has the same effect on B-branes as a noncommutative deformation of X. We show that for hyperkähler X such deformations allow one to interpolate continuously between the A-model and the B-model. For generic values of the noncommutativity and the B-field, properties of the topologically twisted sigma-models can be described in terms of generalized complex structures introduced by N. Hitchin. For example, we show that the path integral for the deformed sigma-model is localized on generalized holomorphic maps, whereas for the A-model and the B-model it is localized on holomorphic and constant maps, respectively. The geometry of topological D-branes is also best described using generalized complex structures. We also derive a constraint on the Chern character of topological D-branes, which includes A-branes and B-branes as special cases.