Geometric magnetic phase for timelike spherical optical ferromagnetic model

Author(s):  
Talat Korpinar

In this paper, we give some constructions for the applications of optical magnetic Heisenberg spherical ferromagnetic chain of T - timelike magnetic particle by spherical de Sitter frame in de Sitter space. This aim may be concluded by well-known de Sitter frame or a new alternative spherical frame with an optical magnetic spherical Heisenberg ferromagnetic chain. Moreover, we achieve total magnetic phases of T- timelike magnetic particle evolutions. Finally, we obtain some numerical modeling of optical magnetic spherical Heisenberg ferromagnetic flows.

1993 ◽  
Vol 07 (01n03) ◽  
pp. 867-870 ◽  
Author(s):  
H. SHIRAISHI ◽  
T. HORI ◽  
Y. YAMAGUCHI ◽  
S. FUNAHASHI ◽  
K. KANEMATSU

The magnetic susceptibility measurements have been made on antiferromagnetic compounds Mn1–xFexSn2 and the magnetic phase diagram was illustrated. The high temperature magnetic phases I and III, major phases, were analyzed on the basis of molecular field theory and explained the change of magnetic structure I⇌III occured at x≈0.8.


2012 ◽  
Vol 29 (19) ◽  
pp. 194002 ◽  
Author(s):  
Óscar J C Dias ◽  
Gary T Horowitz ◽  
Jorge E Santos
Keyword(s):  

2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Samim Akhtar ◽  
Sayantan Choudhury ◽  
Satyaki Chowdhury ◽  
Debopam Goswami ◽  
Sudhakar Panda ◽  
...  

Abstract In this work, our prime objective is to study non-locality and long range effect of two body correlation using quantum entanglement from various information theoretic measure in the static patch of de Sitter space using a two body Open Quantum System (OQS). The OQS is described by a system of two entangled atoms, surrounded by a thermal bath, which is modelled by a massless probe scalar field. Firstly, we partially trace over the bath field and construct the Gorini Kossakowski Sudarshan Lindblad (GSKL) master equation, which describes the time evolution of the reduced subsystem density matrix. This GSKL master equation is characterized by two components, these are-Spin chain interaction Hamiltonian and the Lindbladian. To fix the form of both of them, we compute the Wightman functions for probe massless scalar field. Using this result alongwith the large time equilibrium behaviour we obtain the analytical solution for reduced density matrix. Further using this solution we evaluate various entanglement measures, namely Von-Neumann entropy, R$$e'$$e′nyi entropy, logarithmic negativity, entanglement of formation, concurrence and quantum discord for the two atomic subsystem on the static patch of De-Sitter space. Finally, we have studied violation of Bell-CHSH inequality, which is the key ingredient to study non-locality in primordial cosmology.


2014 ◽  
Vol 351 ◽  
pp. 872-899 ◽  
Author(s):  
Jun Feng ◽  
Yao-Zhong Zhang ◽  
Mark D. Gould ◽  
Heng Fan ◽  
Cheng-Yi Sun ◽  
...  

1980 ◽  
Vol 96 (1-2) ◽  
pp. 105-109 ◽  
Author(s):  
A. Chakrabarti ◽  
A. Comtet ◽  
K.S. Viswanathan

1949 ◽  
Vol 76 (2) ◽  
pp. 296-297 ◽  
Author(s):  
Satosi Watanabe

Sign in / Sign up

Export Citation Format

Share Document