Lower Bounds for Local Cohomology Modules with Respect to a Pair of Ideals

2016 ◽  
Vol 23 (02) ◽  
pp. 329-334
Author(s):  
M. Lotfi Parsa ◽  
Sh. Payrovi

Let R be a Noetherian ring, I and J two ideals of R, M an R-module and t an integer. Let S be a Serre subcategory of the category of R-modules satisfying the condition CI, and N be a finitely generated R-module with Supp RN= V (𝔞) for some [Formula: see text]. It is shown that if [Formula: see text] for all i < t and all j < t-i, then [Formula: see text] for all i < t. Let S be the class of all R-modules N with dim R N ≤ k, where k is an integer. It is proved that if [Formula: see text] for all i < t and all [Formula: see text], then [Formula: see text] for all i < t. It follows that [Formula: see text].

2016 ◽  
Vol 59 (2) ◽  
pp. 271-278
Author(s):  
Fatemeh Dehghani-Zadeh

AbstractLet be a graded Noetherian ring with local base ring (R0 ,m0) and let . Let M and N be finitely generated graded R-modules and let a = a0 + R+ an ideal of R. We show that and are Artinian for some i s and j s with a specified property, where bo is an ideal of R0 such that a0 + b0 is an m0-primary ideal.


2015 ◽  
Vol 15 (01) ◽  
pp. 1650019 ◽  
Author(s):  
Tsutomu Nakamura

Let R be a commutative Noetherian ring, 𝔞 an ideal of R and M, N two finitely generated R-modules. Let t be a positive integer or ∞. We denote by Ωt the set of ideals 𝔠 such that [Formula: see text] for all i < t. First, we show that there exists the ideal 𝔟t which is the largest in Ωt and [Formula: see text]. Next, we prove that if 𝔡 is an ideal such that 𝔞 ⊆ 𝔡 ⊆ 𝔟t, then [Formula: see text] for all i < t.


2014 ◽  
Vol 21 (03) ◽  
pp. 517-520 ◽  
Author(s):  
Hero Saremi ◽  
Amir Mafi

Let R be a commutative Noetherian ring, 𝔞 an ideal of R, and M a non-zero finitely generated R-module. Let t be a non-negative integer. In this paper, it is shown that [Formula: see text] for all i < t if and only if there exists an ideal 𝔟 of R such that dim R/𝔟 ≤ 1 and [Formula: see text] for all i < t. Moreover, we prove that [Formula: see text] for all i.


Author(s):  
Donatella Delfino

Let (R,m) be a local, noetherian, d-dimensional ring and let M be a finitely generated R-module. Since the local cohomology modules are artinian, is finitely generated for all i and j (see [4], Remark 1*middot;3 and 2·1). Grothendieck[2] made the following conjecture: If I is an ideal of a noetherian ring R, thenis finitely generated for all j.


2019 ◽  
Vol 18 (12) ◽  
pp. 1950236
Author(s):  
Takeshi Yoshizawa

Faltings presented the local-global principle for the finiteness dimension of local cohomology modules. This paper deals with the local-global principle for an extension subcategory over a commutative Noetherian ring. We prove that finitely generated modules satisfy the local-global principles for certain extension subcategories. Additionally, we provide a generalization of Faltings’ local-global principle, which also includes the local-global principles for the Artinianness and Minimaxness of local cohomology modules.


2008 ◽  
Vol 15 (02) ◽  
pp. 303-308 ◽  
Author(s):  
Jafar Amjadi ◽  
Reza Naghipour

The study of the cohomological dimension of algebraic varieties has produced some interesting results and problems in local algebra. Let 𝔞 be an ideal of a commutative Noetherian ring R. For finitely generated R-modules M and N, the concept of cohomological dimension cd 𝔞(M, N) of M and N with respect to 𝔞 is introduced. If 0 → N' → N → N'' → 0 is an exact sequence of finitely generated R-modules, then it is shown that cd 𝔞(M, N) = max { cd 𝔞(M, N'), cd 𝔞(M, N'')} whenever proj dim M < ∞. Also, if L is a finitely generated R-module with Supp (N/Γ𝔞(N)) ⊆ Supp (L/Γ𝔞(L)), then it is proved that cd 𝔞(M, N) ≤ max { cd 𝔞(M,L), proj dim M}. Finally, as a consequence, a result of Brodmann is improved.


2015 ◽  
Vol 97 (111) ◽  
pp. 233-238 ◽  
Author(s):  
Sh. Payrovi ◽  
S. Babaei ◽  
I. Khalili-Gorji

Let R be a Noetherian ring, M a finitely generated R-module and N an arbitrary R-module. We consider the generalized local cohomology modules, with respect to an arbitrary ideal I of R, and prove that, for all nonnegative integers r, t and all p ? Spec(R) the Bass number ?r(p,HtI (M,N)) is bounded above by ?tj=0?r(p, t?jExtR (M,HjI (N))). A corollary is that Ass (HtI (M,N)? Utj=0 Ass (t?jExtR (M,HjI(N))). In a slightly different direction, we also present some well known results about generalized local cohomology modules.


2018 ◽  
Vol 17 (02) ◽  
pp. 1850020 ◽  
Author(s):  
Moharram Aghapournahr

Let [Formula: see text] be a commutative Noetherian ring, [Formula: see text] and [Formula: see text] be two ideals of [Formula: see text] and [Formula: see text] be an [Formula: see text]-module (not necessary [Formula: see text]-torsion). In this paper among other things, it is shown that if dim [Formula: see text], then the [Formula: see text]-module [Formula: see text] is finitely generated, for all [Formula: see text], if and only if the [Formula: see text]-module [Formula: see text] is finitely generated, for [Formula: see text]. As a consequence, we prove that if [Formula: see text] is finitely generated and [Formula: see text] such that the [Formula: see text]-module [Formula: see text] is [Formula: see text] (or weakly Laskerian) for all [Formula: see text], then [Formula: see text] is [Formula: see text]-cofinite for all [Formula: see text] and for any [Formula: see text] (or minimax) submodule [Formula: see text] of [Formula: see text], the [Formula: see text]-modules [Formula: see text] and [Formula: see text] are finitely generated. Also it is shown that if dim [Formula: see text] (e.g. dim [Formula: see text]) for all [Formula: see text], then the local cohomology module [Formula: see text] is [Formula: see text]-cofinite for all [Formula: see text].


2012 ◽  
Vol 55 (1) ◽  
pp. 81-87 ◽  
Author(s):  
Kamran Divaani-Aazar ◽  
Alireza Hajikarimi

AbstractLet a be an ideal of a commutative Noetherian ring R and M and N two finitely generated R-modules. Our main result asserts that if dim R/a ≤ 1, then all generalized local cohomology modules (M,N) are a-cofinite.


2010 ◽  
Vol 17 (04) ◽  
pp. 699-704
Author(s):  
Lizhong Chu

Let R = ⨁n≥ 0 Rn be a homogeneous noetherian ring with local base ring [Formula: see text], and N a finitely generated graded R-module. Let [Formula: see text] be the i-th local cohomology module of N with respect to R+ := ⨁n > 0 Rn. Let t be the largest integer such that [Formula: see text] is not minimax. We prove that [Formula: see text] is [Formula: see text]-coartinian for any i > t, and [Formula: see text] is artinian. Let s be the first integer such that [Formula: see text] is not minimax. We show that for any i ≤ s, the graded module [Formula: see text] is artinian.


Sign in / Sign up

Export Citation Format

Share Document