TIME-DOMAIN INTERPOLATION ON GRAPHICS PROCESSING UNIT

2011 ◽  
Vol 04 (01) ◽  
pp. 89-95 ◽  
Author(s):  
XIQI LI ◽  
GUOHUA SHI ◽  
YUDONG ZHANG

The signal processing speed of spectral domain optical coherence tomography (SD-OCT) has become a bottleneck in a lot of medical applications. Recently, a time-domain interpolation method was proposed. This method can get better signal-to-noise ratio (SNR) but much-reduced signal processing time in SD-OCT data processing as compared with the commonly used zero-padding interpolation method. Additionally, the resampled data can be obtained by a few data and coefficients in the cutoff window. Thus, a lot of interpolations can be performed simultaneously. So, this interpolation method is suitable for parallel computing. By using graphics processing unit (GPU) and the compute unified device architecture (CUDA) program model, time-domain interpolation can be accelerated significantly. The computing capability can be achieved more than 250,000 A-lines, 200,000 A-lines, and 160,000 A-lines in a second for 2,048 pixel OCT when the cutoff length is L = 11, L = 21, and L = 31, respectively. A frame SD-OCT data (400A-lines × 2,048 pixel per line) is acquired and processed on GPU in real time. The results show that signal processing time of SD-OCT can be finished in 6.223 ms when the cutoff length L = 21, which is much faster than that on central processing unit (CPU). Real-time signal processing of acquired data can be realized.

2011 ◽  
Vol 04 (03) ◽  
pp. 325-335 ◽  
Author(s):  
XIQI LI ◽  
GUOHUA SHI ◽  
LING WEI ◽  
ZHIHUA DING ◽  
YUDONG ZHANG

Sensitivity and data processing speed are important in spectral domain Optical Coherence Tomography (SD-OCT) system. To get a higher sensitivity, zero-padding interpolation together with linear interpolation is commonly used to re-sample the interference data in SD-OCT, which limits the data processing speed. Recently, a time-domain interpolation for SD-OCT was proposed. By eliminating the huge Fast Fourier Transform Algorithm (FFT) operations, the operation number of the time-domain interpolation is much less than that of the zero-padding interpolation. In this paper, a numerical simulation is performed to evaluate the computational complexity and the interpolation accuracy. More than six times acceleration is obtained. At the same time, the normalized mean square error (NMSE) results show that the time-domain interpolation method with cut-off length L = 21 and L = 31 can improve about 1.7 dB and 2.1 dB when the distance mismatch is 2.4 mm than that of zero-padding interpolation method with padding times M = 4, respectively. Furthermore, this method can be applied the parallel arithmetic processing because only the data in the cut-off window is processed. By using Graphics Processing Unit (GPU) with compute unified device architecture (CUDA) program model, a frame (400 A-lines × 2048 pixels × 12 bits) data can be processed in 6 ms and the processing capability can be achieved 164,000 line/s for 1024-OCT and 71,000 line/s for 2048-OCT when the cut-off length is 21. Thus, a high-sensitivity and ultra-high data processing SD-OCT is realized.


2014 ◽  
Vol 07 (03) ◽  
pp. 1450010 ◽  
Author(s):  
Xiqi Li ◽  
Guohua Shi ◽  
Ping Huang ◽  
Yudong Zhang

A multi-GPU system designed for high-speed, real-time signal processing of optical coherence tomography (OCT) is described herein. For the OCT data sampled in linear wave numbers, the maximum processing rates reached 2.95 MHz for 1024-OCT and 1.96 MHz for 2048-OCT. Data sampled using linear wavelengths were re-sampled using a time-domain interpolation method and zero-padding interpolation method to improve image quality. The maximum processing rates for 1024-OCT reached 2.16 MHz for the time-domain method and 1.26 MHz for the zero-padding method. The maximum processing rates for 2048-OCT reached 1.58 MHz, and 0.68 MHz, respectively. This method is capable of high-speed, real-time processing for OCT systems.


2021 ◽  
Vol 20 (3) ◽  
pp. 1-22
Author(s):  
David Langerman ◽  
Alan George

High-resolution, low-latency apps in computer vision are ubiquitous in today’s world of mixed-reality devices. These innovations provide a platform that can leverage the improving technology of depth sensors and embedded accelerators to enable higher-resolution, lower-latency processing for 3D scenes using depth-upsampling algorithms. This research demonstrates that filter-based upsampling algorithms are feasible for mixed-reality apps using low-power hardware accelerators. The authors parallelized and evaluated a depth-upsampling algorithm on two different devices: a reconfigurable-logic FPGA embedded within a low-power SoC; and a fixed-logic embedded graphics processing unit. We demonstrate that both accelerators can meet the real-time requirements of 11 ms latency for mixed-reality apps. 1


2020 ◽  
Vol 32 ◽  
pp. 03054
Author(s):  
Akshata Parab ◽  
Rashmi Nagare ◽  
Omkar Kolambekar ◽  
Parag Patil

Vision is one of the very essential human senses and it plays a major role in human perception about surrounding environment. But for people with visual impairment their definition of vision is different. Visually impaired people are often unaware of dangers in front of them, even in familiar environment. This study proposes a real time guiding system for visually impaired people for solving their navigation problem and to travel without any difficulty. This system will help the visually impaired people by detecting the objects and giving necessary information about that object. This information may include what the object is, its location, its precision, distance from the visually impaired etc. All these information will be conveyed to the person through audio commands so that they can navigate freely anywhere anytime with no or minimal assistance. Object detection is done using You Only Look Once (YOLO) algorithm. As the process of capturing the video/images and sending it to the main module has to be carried at greater speed, Graphics Processing Unit (GPU) is used. This will help in enhancing the overall speed of the system and will help the visually Impaired to get the maximum necessary instructions as quickly as possible. The process starts from capturing the real time video, sending it for analysis and processing and get the calculated results. The results obtained from analysis are conveyed to user by means of hearing aid. As a result by this system the blind or the visually impaired people can visualize the surrounding environment and travel freely from source to destination on their own.


2012 ◽  
Vol 3 (7) ◽  
pp. 1557 ◽  
Author(s):  
Kenneth K. C. Lee ◽  
Adrian Mariampillai ◽  
Joe X. Z. Yu ◽  
David W. Cadotte ◽  
Brian C. Wilson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document