On the matrix versions of q-zeta function, q-digamma function and q-polygamma function

2019 ◽  
Vol 13 (08) ◽  
pp. 2050142
Author(s):  
Ravi Dwivedi ◽  
Vivek Sahai

This paper deals with the [Formula: see text]-analogues of generalized zeta matrix function, digamma matrix function and polygamma matrix function. We also discuss their regions of convergence, integral representations and matrix relations obeyed by them. We also give a few identities involving digamma matrix function and [Formula: see text]-hypergeometric matrix series.

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Fuli He ◽  
Ahmed Bakhet ◽  
Mohamed Akel ◽  
Mohamed Abdalla

In recent years, much attention has been paid to the role of degenerate versions of special functions and polynomials in mathematical physics and engineering. In the present paper, we introduce a degenerate Euler zeta function, a degenerate digamma function, and a degenerate polygamma function. We present several properties, recurrence relations, infinite series, and integral representations for these functions. Furthermore, we establish identities involving hypergeometric functions in terms of degenerate digamma function.


2021 ◽  
Vol 71 (2) ◽  
pp. 301-316
Author(s):  
Reshma Sanjhira

Abstract We propose a matrix analogue of a general inverse series relation with an objective to introduce the generalized Humbert matrix polynomial, Wilson matrix polynomial, and the Rach matrix polynomial together with their inverse series representations. The matrix polynomials of Kiney, Pincherle, Gegenbauer, Hahn, Meixner-Pollaczek etc. occur as the special cases. It is also shown that the general inverse matrix pair provides the extension to several inverse pairs due to John Riordan [An Introduction to Combinatorial Identities, Wiley, 1968].


Author(s):  
Gauhar Rahman ◽  
KS Nisar ◽  
Shahid Mubeen

In this paper, we define a (p,v)-extension of Hurwitz-Lerch Zeta function by considering an extension of beta function defined by Parmar et al. [J. Classical Anal. 11 (2017) 81–106]. We obtain its basic properties which include integral representations, Mellin transformation, derivative formulas and certain generating relations. Also, we establish the special cases of the main results.


2007 ◽  
Vol 17 (04) ◽  
pp. 593-615 ◽  
Author(s):  
J. ELSCHNER ◽  
H.-C. KAISER ◽  
J. REHBERG ◽  
G. SCHMIDT

Let ϒ be a three-dimensional Lipschitz polyhedron, and assume that the matrix function μ is piecewise constant on a polyhedral partition of ϒ. Based on regularity results for solutions to two-dimensional anisotropic transmission problems near corner points we obtain conditions on μ and the intersection angles between interfaces and ∂ϒ ensuring that the operator -∇ · μ∇ maps the Sobolev space [Formula: see text] isomorphically onto W-1,q(ϒ) for some q > 3.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1431
Author(s):  
Junesang Choi ◽  
Recep Şahin ◽  
Oğuz Yağcı ◽  
Dojin Kim

A number of generalized Hurwitz–Lerch zeta functions have been presented and investigated. In this study, by choosing a known extended Hurwitz–Lerch zeta function of two variables, which has been very recently presented, in a systematic way, we propose to establish certain formulas and representations for this extended Hurwitz–Lerch zeta function such as integral representations, generating functions, derivative formulas and recurrence relations. We also point out that the results presented here can be reduced to yield corresponding results for several less generalized Hurwitz–Lerch zeta functions than the extended Hurwitz–Lerch zeta function considered here. For further investigation, among possibly various more generalized Hurwitz–Lerch zeta functions than the one considered here, two more generalized settings are provided.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 48
Author(s):  
Kottakkaran Sooppy Nisar

The main aim of this paper is to provide a new generalization of Hurwitz-Lerch Zeta function of two variables. We also investigate several interesting properties such as integral representations, summation formula, and a connection with the generalized hypergeometric function. To strengthen the main results we also consider some important special cases.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 369
Author(s):  
Jiamei Liu ◽  
Yuxia Huang ◽  
Chuancun Yin

In this paper, we present a different proof of the well known recurrence formula for the Riemann zeta function at positive even integers, the integral representations of the Riemann zeta function at positive integers and at fractional points by means of a probabilistic approach.


Sign in / Sign up

Export Citation Format

Share Document