Isolate Roman domination in graphs
Let [Formula: see text] be a graph with the vertex set [Formula: see text]. A function [Formula: see text] is called a Roman dominating function of [Formula: see text], if every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text]. The weight of a Roman dominating function [Formula: see text] is equal to [Formula: see text]. The minimum weight of a Roman dominating function of [Formula: see text] is called the Roman domination number of [Formula: see text], denoted by [Formula: see text]. In this paper, we initiate the study of a variant of Roman dominating functions. A function [Formula: see text] is called an isolate Roman dominating function of [Formula: see text], if [Formula: see text] is a Roman dominating function and there is a vertex [Formula: see text] with [Formula: see text] which is not adjacent to any vertex [Formula: see text] with [Formula: see text]. The minimum weight of an isolate Roman dominating function of [Formula: see text] is called the isolate Roman domination number of [Formula: see text], denoted by [Formula: see text]. We present some upper bound on the isolate Roman domination number of a graph [Formula: see text] in terms of its Roman domination number and its domination number. Moreover, we present some classes of graphs [Formula: see text] with [Formula: see text]. Finally, we show that the decision problem associated with the isolate Roman dominating functions is NP-complete for bipartite graphs and chordal graphs.