ON THE NATURE OF THE X-RAY CORONA OF BLACK HOLE BINARIES

Author(s):  
JULIEN MALZAC

We discuss the nature of the X-ray emitting plasma of black hole binaries. It is well known that the temperature and optical depth of the Comptonising electrons of the X-ray corona of black hole binaries can be measured using spectroscopy in the 1 keV-1 MeV energy band. We emphasize recent developments in the modeling of high energy radiation processes which allow us to constrain other important physical parameters of the corona, such as the strength of magnetic field, or the temperature of the ions. The results appear to challenge current accretion models. In particular, standard advection dominated accretion flow do not match the observed properties of bright hard state X-ray binaries such as Cygnus X-1 or GX 339-4. On the other hand, we find that all the data would be consistent with a multi-zone magnetically dominated hot accretion flow model. We also emphasize that besides the usual spectral state transitions observed at luminosities above a few percent of Eddington, there is observational evidence for at least two additional, more subtle, radiative transitions occuring at lower luminosities.

2020 ◽  
Vol 496 (2) ◽  
pp. 1001-1012 ◽  
Author(s):  
V A Cúneo ◽  
K Alabarta ◽  
L Zhang ◽  
D Altamirano ◽  
M Méndez ◽  
...  

ABSTRACT The black hole candidate and X-ray binary MAXI J1535−571 was discovered in 2017 September. During the decay of its discovery outburst, and before returning to quiescence, the source underwent at least four reflaring events, with peak luminosities of ∼1035–36 erg s−1 (d/4.1 kpc)2. To investigate the nature of these flares, we analysed a sample of NICER (Neutron star Interior Composition Explorer) observations taken with almost daily cadence. In this work, we present the detailed spectral and timing analysis of the evolution of the four reflares. The higher sensitivity of NICER at lower energies, in comparison with other X-ray detectors, allowed us to constrain the disc component of the spectrum at ∼0.5 keV. We found that during each reflare the source appears to trace out a q-shaped track in the hardness–intensity diagram similar to those observed in black hole binaries during full outbursts. MAXI J1535−571 transits between the hard state (valleys) and softer states (peaks) during these flares. Moreover, the Comptonized component is undetected at the peak of the first reflare, while the disc component is undetected during the valleys. Assuming the most likely distance of 4.1 kpc, we find that the hard-to-soft transitions take place at the lowest luminosities ever observed in a black hole transient, while the soft-to-hard transitions occur at some of the lowest luminosities ever reported for such systems.


2020 ◽  
Vol 492 (4) ◽  
pp. 5271-5279 ◽  
Author(s):  
Nick Higginbottom ◽  
Christian Knigge ◽  
Stuart A Sim ◽  
Knox S Long ◽  
James H Matthews ◽  
...  

ABSTRACT X-ray signatures of outflowing gas have been detected in several accreting black hole binaries, always in the soft state. A key question raised by these observations is whether these winds might also exist in the hard state. Here, we carry out the first full-frequency radiation hydrodynamic simulations of luminous (${L = 0.5 \, L_{\mathrm{\mathrm{ Edd}}}}$) black hole X-ray binary systems in both the hard and the soft state, with realistic spectral energy distributions (SEDs). Our simulations are designed to describe X-ray transients near the peak of their outburst, just before and after the hard-to-soft state transition. At these luminosities, it is essential to include radiation driving, and we include not only electron scattering, but also photoelectric and line interactions. We find powerful outflows with ${\dot{M}_{\mathrm{ wind}} \simeq 2 \, \dot{M}_{\mathrm{ acc}}}$ are driven by thermal and radiation pressure in both hard and soft states. The hard-state wind is significantly faster and carries approximately 20 times as much kinetic energy as the soft-state wind. However, in the hard state the wind is more ionized, and so weaker X-ray absorption lines are seen over a narrower range of viewing angles. Nevertheless, for inclinations ≳80°, blueshifted wind-formed Fe xxv and Fe xxvi features should be observable even in the hard state. Given that the data required to detect these lines currently exist for only a single system in a luminous hard state – the peculiar GRS 1915+105 – we urge the acquisition of new observations to test this prediction. The new generation of X-ray spectrometers should be able to resolve the velocity structure.


2016 ◽  
Vol 25 (09) ◽  
pp. 1641022 ◽  
Author(s):  
Emanuele Berti ◽  
Vitor Cardoso ◽  
Luis C. B. Crispino ◽  
Leonardo Gualtieri ◽  
Carlos Herdeiro ◽  
...  

We review recent progress in the application of numerical relativity techniques to astrophysics and high-energy physics. We focus on recent developments regarding the spin evolution in black hole binaries, high-energy black hole collisions, compact object solutions in scalar–tensor gravity, superradiant instabilities, hairy black hole solutions in Einstein’s gravity coupled to fundamental fields, and the possibility to gain insight into these phenomena using analog gravity models.


2020 ◽  
Vol 638 ◽  
pp. A127
Author(s):  
Ilia A. Kosenkov ◽  
Alexandra Veledina ◽  
Valery F. Suleimanov ◽  
Juri Poutanen

Black hole X-ray binaries show signs of nonthermal emission in the optical to near-infrared range. We analyzed optical to near-infrared SMARTS data on GX 339-4 over the 2002–2011 period. Using soft state data, we estimated the interstellar extinction toward the source and characteristic color temperatures of the accretion disk. We show that various spectral states of regular outbursts occupy similar regions on color-magnitude diagrams, and that transitions between the states proceed along the same tracks despite substantial differences in the morphology of the observed light curves. We determine the typical duration of hard-to-soft and soft-to-hard state transitions and the hard state at the decaying stage of the outburst to be one, two, and four weeks, respectively. We find that the failed outbursts cannot be easily distinguished from the regular outbursts at their early stages, but if the source reaches 16 mag in V band, it transits to the soft state. By subtracting the contribution of the accretion disk, we obtain spectra of the nonthermal component, which have constant, nearly flat shapes during the transitions between the hard and soft states. In contrast to the slowly evolving nonthermal component seen at optical and near-infrared wavelengths, the mid-infrared spectrum is strongly variable on short timescales and sometimes shows a prominent excess with a cutoff below 1014 Hz. We show that the radio to optical spectrum can be modeled using three components corresponding to the jet, hot flow, and irradiated accretion disk.


2010 ◽  
Vol 6 (S275) ◽  
pp. 294-298 ◽  
Author(s):  
Pieter van Oers ◽  
Sera Markoff

AbstractGRS 1915+105 is a very peculiar black hole binary that exhibits accretion-related states that are not observed in any other stellar-mass black hole system. One of these states, however – referred to as the plateau state – may be related to the canonical hard state of black hole X-ray binaries. Both the plateau and hard state are associated with steady, relatively lower X-ray emission and flat/inverted radio emission, that is sometimes resolved into compact, self-absorbed jets. To investigate the relationship between the plateau and the hard state, we fit two multi-wavelength observations using a steady-state outflow-dominated model, developed for hard state black hole binaries. The data sets consist of quasi-simultaneous observations in radio, near-infrared and X-ray bands. Interestingly, we find both significant differences between the two plateau states, as well as between the best-fit model parameters and those representative of the hard state. We discuss our interpretation of these results, and the possible implications for GRS 1915+105's relationship to canonical black hole candidates.


2010 ◽  
Vol 403 (3) ◽  
pp. 1102-1112 ◽  
Author(s):  
C. Y. Chiang ◽  
Chris Done ◽  
M. Still ◽  
O. Godet

10.14311/1480 ◽  
2011 ◽  
Vol 51 (6) ◽  
Author(s):  
M. Obst ◽  
K. Pottschmidt ◽  
A. Lohfink ◽  
J. Wilms ◽  
M. Böck ◽  
...  

GRS 1758–258 is the least studied of the three persistent black hole X-ray binaries in our Galaxy. It is also one of only two known black hole candidates, including all black hole transients, which shows a decrease of its 3-10 keV flux when entering the thermally dominated soft state, rather than an increase.We present the spectral evolution of GRS 1758–258 from RXTE-PCA observations spanning a time of about 11 years from 1996 to 2007. During this time, seven dim soft states are detected. We also consider INTEGRAL monitoring observations of the source and compare the long-term behavior to that of the bright persistent black hole X-ray binary Cygnus X-1. We discuss the observed state transitions in the light of physical scenarios for black hole transitions.


2020 ◽  
Vol 495 (2) ◽  
pp. 2408-2415
Author(s):  
Pei-Xin Shen ◽  
Wei-Min Gu

ABSTRACT When the matter from a companion star is accreted towards the central compact accretor, i.e. a black hole (BH) or a neutron star (NS), an accretion disc and a jet outflow will form, providing bight X-ray and radio emission, which is known as X-ray binaries (XRBs). In the low/hard state, there exist disc–jet couplings in XRBs, but it remains uncertain whether the jet power comes from the disc or the central accretor. Moreover, black hole X-ray binaries (BHXRBs) have different properties compared with neutron star X-ray binaries (NSXRBs): quiescent BHXRBs are typically two to three orders of magnitude less luminous than NSXRBs in X-ray, whereas BHXRBs are more radio loud than NSXRBs. In observations, an empirical correlation has been established between radio and X-ray luminosity, $L_{\rm R} \propto L_{\rm X}^b$, where b ∼ 0.7 for BHXRBs and b ∼ 1.4 for non-pulsating NSXRBs. However, there are some outliers of BHXRBs showing unusually steep correlation as NSXRBs at higher luminosities. In this work, under the assumption that the origin of jet power is related to the internal energy of the inner disc, we apply our magnetized, radiatively efficient thin disc model and the well-known radiatively inefficient accretion flow model to NSXRBs and BHXRBs. We find that the observed radio/X-ray correlations in XRBs can be well understood by the disc–jet couplings.


Sign in / Sign up

Export Citation Format

Share Document