Evidence of the Poisson/Gaudin–Mehta phase transition for band matrices on global scales
We prove that the Poisson/Gaudin–Mehta phase transition conjectured to occur when the bandwidth of an [Formula: see text] symmetric band matrix grows like [Formula: see text] is naturally observable in the rate of convergence of the level density to the Wigner semi-circle law. Specifically, we show for periodic and non-periodic band matrices the rate of convergence of the fourth moment of the level density is independent of the boundary conditions in the localized regime [Formula: see text] with a rate of [Formula: see text] for both cases, whereas in the delocalized regime [Formula: see text] where boundary effects become important, the rate of convergence for the two ensembles differs significantly, slowing to [Formula: see text] for non-periodic band matrices. Additionally, we examine the case of thick non-periodic band matrices [Formula: see text], showing that the fourth moment is maximally deviated from the Wigner semi-circle law when [Formula: see text], and provide numerical evidence that the eigenvector statistics also exhibit critical behavior at this point.