ELECTRONIC AND MAGNETIC PROPERTIES OF SILICENE AND SILICANE NANORIBBONS
In this paper, first-principles calculations are carried out to study the electronic and magnetic properties of silicene and silicane nanoribbons, with and without H -passivation at the edges. We predict that the armchair nanoribbons are nonmagnetic and semiconducting. Interestingly, the band gaps of armchair silicene nanoribbons show oscillating behavior as the ribbon width increases. When their edges are passivated with H atoms, However, the oscillating phase is reversed. The zigzag nanoribbons are anti-ferromagnetic and semiconducting in their ground states, except that the zigzag silicane nanoribbons with edges passivated by H atoms are nonmagnetic. The zigzag silicane nanoribbons with bare edges show the highest magnetic moments in their ground states. The band gaps of zigzag nanoribbons in their ground states decrease with the increment of width. The metastable states of zigzag silicene nanoribbons are ferromagnetic and metallic. The zigzag silicane nanoribbons with bare edges are ferromagnetic and semiconducting in their metastable states. The silicene/silicane nanoribbons with attractive functions, which are achievable by edge engineering or external fields, may be applied to spintronic technologies and nanodevices.