Research on the Optimization Design of the Acoustic Stealth Shape of a Bottom Object
This paper presents an optimal design method for the acoustic stealth shape for a bottom object with relatively lower echo strength (ES), based on the physical acoustics method (PAM) and genetic algorithm (GA). Specifically, the performance of the PAM was evaluated with acoustic scattering from a Manta-like object, using two-dimensional (2D) axisymmetric calculation method. In the optimization method, GA, the object shape represented by the Bernstein polynomial, grid topology acquired by using the MATLAB-COMSOL module and the scattering calculation are combined into a process. The optimization objective function is given as the weighting function of the ES of the bottom object with different grazing angles and frequencies. Finally, the two optimal shapes of the bottom object under different conditions are given, in which the ES and the angle detection rate after optimization are greatly reduced. This optimal method provides guidance for the lower ES shape design of bottom targets.