A Cooper-Pair Light-Emitting Diode: Temperature Dependence of Both Quantum Efficiency and Radiative Recombination Lifetime

2010 ◽  
Vol 3 (5) ◽  
pp. 054001 ◽  
Author(s):  
Ikuo Suemune ◽  
Yujiro Hayashi ◽  
Shuhei Kuramitsu ◽  
Kazunori Tanaka ◽  
Tatsushi Akazaki ◽  
...  
2007 ◽  
Vol 4 (7) ◽  
pp. 2784-2787 ◽  
Author(s):  
Y. Li ◽  
W. Zhao ◽  
Y. Xia ◽  
M. Zhu ◽  
J. Senawiratne ◽  
...  

2021 ◽  
Vol 118 (2) ◽  
pp. 021102
Author(s):  
Dong-Pyo Han ◽  
Ryoto Fujiki ◽  
Ryo Takahashi ◽  
Yusuke Ueshima ◽  
Shintaro Ueda ◽  
...  

2008 ◽  
Vol 20 (16) ◽  
pp. 3100-3104 ◽  
Author(s):  
Beak-Hyun Kim ◽  
Chang-Hee Cho ◽  
Jin-Soo Mun ◽  
Min-Ki Kwon ◽  
Tae-Young Park ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ezzah Azimah Alias ◽  
Muhammad Esmed Alif Samsudin ◽  
Steven DenBaars ◽  
James Speck ◽  
Shuji Nakamura ◽  
...  

Purpose This study aims to focus on roughening N-face (backside) GaN substrate prior to GaN-on-GaN light-emitting diode (LED) growth as an attempt to improve the LED performance. Design/methodology/approach The N-face of GaN substrate was roughened by three different etchants; ammonium hydroxide (NH4OH), a mixture of NH4OH and H2O2 (NH4OH: H2O2) and potassium hydroxide (KOH). Hexagonal pyramids were successfully formed on the surface when the substrate was subjected to the etching in all cases. Findings Under 30 min of etching, the highest density of pyramids was obtained by NH4OH: H2O2 etching, which was 5 × 109 cm–2. The density by KOH and NH4OH etchings was 3.6 × 109 and 5 × 108 cm–2, respectively. At standard operation of current density at 20 A/cm2, the optical power and external quantum efficiency of the LED on the roughened GaN substrate by NH4OH: H2O2 were 12.3 mW and 22%, respectively, which are higher than its counterparts. Originality/value This study demonstrated NH4OH: H2O2 is a new etchant for roughening the N-face GaN substrate. The results showed that such etchant increased the density of the pyramids on the N-face GaN substrate, which subsequently resulted in higher optical power and external quantum efficiency to the LED as compared to KOH and NH4OH.


2002 ◽  
Vol 725 ◽  
Author(s):  
T. Graves-Abe ◽  
F. Pschenitzka ◽  
J.C. Sturm

AbstractOne promising method to pattern full color polymer Organic Light-Emitting Diode (OLED) displays is to print dye from a pre-patterned organic film onto a spin-cast polymer and then diffuse the dye into the film at room temperature in a solvent vapor environment. This method utilizes the well-known tendency for a polymer film to absorb solvent vapor, which depresses the glass transition temperature of the polymer and dramatically increases diffusion the dye. In this work, we have studied the temperature dependence of this process. The dye coumarin 6 (C6) was transferred onto films consisting of 2-(4-biphenylyl)-5-(4-tert-butylphenyl)- 1,3,4-oxadiazole (PBD) mixed with the polymer poly(9-vinylcarbazole) (PVK). Samples were then placed on a heated stage in a chamber and exposed to acetone vapor to diffuse the C6 into the polymer film. The profile of the diffused dye was determined by depthdependent photoluminescence measurements and Secondary Ion Mass Spectroscopy. We observed that the amount of diffused dye decreased at higher temperatures, in contrast to conventional thermally-driven diffusion. The results are understood by noting that the decrease in the polymer glass-transition temperature and the corresponding rapid increase in dye diffusivity depend on the quantity of solvent absorbed by the polymer, which decreases as the temperature of the polymer is raised.


2002 ◽  
Vol 725 ◽  
Author(s):  
Anoop S. Dhoot ◽  
Neil C. Greenham

AbstractIn a polymer light-emitting diode, the fraction of excitons formed as singlets is of crucial importance in determining the quantum efficiency. We have shown that it is possible to measure excited state absorptions due to triplet excitons and polarons in working polymer LEDs, and we are able to quantify the triplet generation rate by measuring the strength of the triplet absorption. Here, we show that by careful study of singlet emission and triplet absorption in an LED based on a poly(p-phenylenevinylene) derivative we can obtain an accurate value of 83±7% for the singlet formation probability, significantly higher than the value of 25% predicted by simple spin statistics. We extend these measurements to devices based on poly(dioctyl-fluorene), where we find similarly high values for the singlet formation probability. In devices using the polyfluorene copolymer F8BT, we find that the triplet absorption is extremely small, consistent with even higher singlet formation probabilities.


Sign in / Sign up

Export Citation Format

Share Document