scholarly journals Schild Action and Space-Time Uncertainty Principle in String Theory

1997 ◽  
Vol 97 (6) ◽  
pp. 949-961 ◽  
Author(s):  
T. Yoneya
2001 ◽  
Vol 16 (05) ◽  
pp. 945-955 ◽  
Author(s):  
TAMIAKI YONEYA

We analyze the nature of space-time nonlocality in string theory. After giving a brief overview on the conjecture of the space-time uncertainty principle, a (semi-classical) reformulation of string quantum mechanics, in which the dynamics is represented by the noncommutativity between temporal and spatial coordinates, is outlined. The formalism is then compared to the space-time noncommutative field theories associated with nonzero electric B-fields.


1997 ◽  
Vol 12 (27) ◽  
pp. 2029-2035 ◽  
Author(s):  
G. Amelino-Camelia ◽  
N. E. Mavromatos ◽  
John Ellis ◽  
D. V. Nanopoulos

Within a Liouville approach to noncritical string theory, we argue for a nontrivial commutation relation between space and time observables, leading to a nonzero space–time uncertainty relation δx δt>0, which vanishes in the limit of weak string coupling.


1998 ◽  
Vol 13 (03) ◽  
pp. 203-209 ◽  
Author(s):  
ICHIRO ODA

Starting from topological quantum field theory, we derive space–time uncertainty relation with respect to the time interval and the spatial length proposed by Yoneya through breakdown of topological symmetry in the large-N matrix model. This work suggests that the topological symmetry might be an underlying higher symmetry behind the space–time uncertainty principle of string theory.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 831-838
Author(s):  
Massimo Fioranelli ◽  
Alireza Sepehri ◽  
Maria Grazia Roccia ◽  
Mahdieh Ghasemi

Abstract Recently, a method for calculating the quantum spectrum of black holes has been proposed. We show that this method can be applied for radiations of 4 + n - dimensional water around a DNA. In this model, DNA acts like a black hole and produces a curved space-time in a water around it. In these conditions, molecules of water in four dimensional universe are entangled with some DNA-like structures in extra dimension. Consequently, the effects of structures of water in extra dimensions can be observed in four dimensions. The entangled structures emit some quantum spectrum which can be transmitted to pure waters. These waves produce a curved space-time in pure water and make an entanglement between structure of water on four and DNA-like structures in extra dimensions. As a result, some signatures of DNAs can be observed in pure water. This model helps us to understand the reason for the emergence of life on the earth. To explain the model better, we unify Darwin’s theory with string theory in a new Darwinian’s string theory. In this theory, a zero dimensional manifold decays into two types of closed strings. One type decays into open strings and then these strings join to each other and form cosmos. Another type decays into open strings which form biological matters like DNAs and molecules of water in universe and anti-DNAs and anti-water in anti-universe. Thus, DNAs and molecules water are connected to each other and anti-DNAs and molecules of anti-water in anti-universe through some closed strings. These strings helps to molecules of water to store their informations in extra dimension and have long time memory. Because, information that are transformed into extra dimensions through closed strings, could be returned into universe. Also, these closed strings could have the main role in DNA transduction. Because, they connect two tubes one including water and DNA and another pure water in universe to two tubes including anti-DNA and water in anti-universe and transform properties of DNA into pure water. As a result, Darwinian string theory can confirm both water memory and DNA transduction. Finally, this theory response to this question that why memory of water couldnt remain for a long time. In this model, open strings which connects atoms in universe with anti-atoms in anti-universe interact with open strings which connects molecules of water and anti-water and decrease their entanglement. This causes that exchanging information between water and anti-water decreases and memory is dis-appeared.


Sign in / Sign up

Export Citation Format

Share Document