scholarly journals Characterization of shallow overpressure in consolidating submarine slopes via seismic full waveform inversion

2020 ◽  
Vol 53 (3) ◽  
pp. 366-377 ◽  
Author(s):  
Giuseppe Provenzano ◽  
Antonis Zervos ◽  
Mark E. Vardy ◽  
Timothy J. Henstock

Pore pressures higher than hydrostatic correspond to localized reductions of the level of shear stress required to induce lateral mass movement in a slope, and therefore play a key role in preconditioning submarine landsliding. In this paper, we investigate whether multi-channel seismic reflection data can be used to infer potentially destabilizing pore-pressure levels at a resolution and sensitivity useful for in-situ slope stability characterization. We simulate the continuous deposition of sediment on consolidating slopes in two scenarios, with combinations of sedimentation rate and permeability distribution leading to disequilibrium compaction. Ultra-high-frequency (UHF; 0.2–2.5 kHz) seismic reflection data are computed for each model and a stochastic full waveform inversion (FWI) method is used to retrieve the sub-seabed properties from the computed seismograms. These are then interpreted as time–depth variations in the effective stress (σʹ) regime, and therefore local overpressure ratio and factor of safety, using a combination of p-wave velocity to σʹ transforms. The results demonstrate that multi-channel UHF seismic data can provide valuable constraints on the distribution of physical properties in the top 50 m below seabed at a sub-metric scale, and with a sensitivity useful to infer destabilizing excess pore pressure levels.Thematic collection: This article is part of the Measurement and monitoring collection available at: https://www.lyellcollection.org/cc/measurement-and-monitoring

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE25-VE34 ◽  
Author(s):  
Gilles Lambaré

Stereotomography was proposed [Formula: see text] ago for estimating velocity macromodels from seismic reflection data. Initially, the goal was to retain the advantages of standard traveltime tomography while providing an alternative to difficult interpretive traveltime picking. Stereotomography relies on the concept of locally coherent events characterized by their local slopes in the prestack data cube. Currently, stereotomography has been developed in two and three dimensions, and precious experience has been gained. The expected advantages have been demonstrated fully (in particular, the efficiency and reliability of the semiautomatic stereotomographic picking strategies), and further studies have increased the method’s potential and flexibility. For example, stereotomographic picking can now be done in either the prestack or poststack domain, in either the time (migrated or unmigrated) or depth domain. It appears that the theoretical frame of stereotomography can reconcile, very satisfactorily and efficiently, most methods proposed for velocity-macromodel estimation for depth imaging. Moreover, an extension of the method to full-waveform inversion already exists and opens the way for very interesting developments.


Geophysics ◽  
2021 ◽  
pp. 1-52
Author(s):  
Yuzhu Liu ◽  
Xinquan Huang ◽  
Jizhong Yang ◽  
Xueyi Liu ◽  
Bin Li ◽  
...  

Thin sand-mud-coal interbedded layers and multiples caused by shallow water pose great challenges to conventional 3D multi-channel seismic techniques used to detect the deeply buried reservoirs in the Qiuyue field. In 2017, a dense ocean-bottom seismometer (OBS) acquisition program acquired a four-component dataset in East China Sea. To delineate the deep reservoir structures in the Qiuyue field, we applied a full-waveform inversion (FWI) workflow to this dense four-component OBS dataset. After preprocessing, including receiver geometry correction, moveout correction, component rotation, and energy transformation from 3D to 2D, a preconditioned first-arrival traveltime tomography based on an improved scattering integral algorithm is applied to construct an initial P-wave velocity model. To eliminate the influence of the wavelet estimation process, a convolutional-wavefield-based objective function for the preprocessed hydrophone component is used during acoustic FWI. By inverting the waveforms associated with early arrivals, a relatively high-resolution underground P-wave velocity model is obtained, with updates at 2.0 km and 4.7 km depth. Initial S-wave velocity and density models are then constructed based on their prior relationships to the P-wave velocity, accompanied by a reciprocal source-independent elastic full-waveform inversion to refine both velocity models. Compared to a traditional workflow, guided by stacking velocity analysis or migration velocity analysis, and using only the pressure component or other single-component, the workflow presented in this study represents a good approach for inverting the four-component OBS dataset to characterize sub-seafloor velocity structures.


Sign in / Sign up

Export Citation Format

Share Document