A non-linear dimensionality-reduction technique for fast similarity search in large databases

Author(s):  
Khanh Vu ◽  
Kien A. Hua ◽  
Hao Cheng ◽  
Sheau-Dong Lang

With the quick development in data advances, client created substance, for example, reviews, ratings, recommendations can be advantageously posted on the web, which have powered enthusiasm for sentiment classification. The quantity of records accessible on both online and offline is expanding drastically. Sentiment Classification has a wide scope of utilizations in review related sites. In this paper, we present our investigations about some exploration paper in this field and exhibited our plan to distinguish the sentiment extremity of a given content as positive or negative by lessening the documents dimension, through utilizing semi-supervised non-linear dimensionality decrease technique. For Sentiment Classification, Random Subspace strategy is utilized. For exploratory assessment, openly accessible sentiment datasets can be utilized to check the adequacy of the proposed technique.


2018 ◽  
Author(s):  
Etienne Becht ◽  
Charles-Antoine Dutertre ◽  
Immanuel W. H. Kwok ◽  
Lai Guan Ng ◽  
Florent Ginhoux ◽  
...  

AbstractUniform Manifold Approximation and Projection (UMAP) is a recently-published non-linear dimensionality reduction technique. Another such algorithm, t-SNE, has been the default method for such task in the past years. Herein we comment on the usefulness of UMAP high-dimensional cytometry and single-cell RNA sequencing, notably highlighting faster runtime and consistency, meaningful organization of cell clusters and preservation of continuums in UMAP compared to t-SNE.


Sign in / Sign up

Export Citation Format

Share Document