Generating concise assertions with complete coverage

Author(s):  
Chen-Hsuan Lin ◽  
Lingyi Liu ◽  
Shobha Vasudevan
Keyword(s):  
Author(s):  
Walter C. McCrone

An excellent chapter on this subject by V.D. Fréchette appeared in a book edited by L.L. Hench and R.W. Gould in 1971 (1). That chapter with the references cited there provides a very complete coverage of the subject. I will add a more complete coverage of an important polarized light microscope (PLM) technique developed more recently (2). Dispersion staining is based on refractive index and its variation with wavelength (dispersion of index). A particle of, say almandite, a garnet, has refractive indices of nF = 1.789 nm, nD = 1.780 nm and nC = 1.775 nm. A Cargille refractive index liquid having nD = 1.780 nm will have nF = 1.810 and nC = 1.768 nm. Almandite grains will disappear in that liquid when observed with a beam of 589 nm light (D-line), but it will have a lower refractive index than that liquid with 486 nm light (F-line), and a higher index than that liquid with 656 nm light (C-line).


Author(s):  
Rocco J. Rotello ◽  
Timothy D. Veenstra

: In the current omics-age of research, major developments have been made in technologies that attempt to survey the entire repertoire of genes, transcripts, proteins, and metabolites present within a cell. While genomics has led to a dramatic increase in our understanding of such things as disease morphology and how organisms respond to medications, it is critical to obtain information at the proteome level since proteins carry out most of the functions within the cell. The primary tool for obtaining proteome-wide information on proteins within the cell is mass spectrometry (MS). While it has historically been associated with the protein identification, developments over the past couple of decades have made MS a robust technology for protein quantitation as well. Identifying quantitative changes in proteomes is complicated by its dynamic nature and the inability of any technique to guarantee complete coverage of every protein within a proteome sample. Fortunately, the combined development of sample preparation and MS methods have made it capable to quantitatively compare many thousands of proteins obtained from cells and organisms.


1982 ◽  
Vol 47 (11) ◽  
pp. 2996-3003
Author(s):  
Zdeněk Bastl

The work function changes of vacuum deposited molybdenum films caused by the chemisorption of propylene, acetylene, hydrogen and nitrogen were measured using the Kelvin vibrating capacitor method. During the hydrocarbon chemisorption, the work function increased in a low surface coverage region but decreased at the higher surface coverages. The saturation values of the work function changes corresponding to complete coverage of the surface by chemisorbed propylene and acetylene equal -0.08 eV and -0.42 eV, respectively. The observed dependences of the work function change on surface coverage are interpreted by the dissociative chemisorption of hydrocarbons on a limited number of surface sites which are simultaneously the sites of preferred adsorption. The extent of dissociation decreases in the adsorption with the increasing surface coverage. The results of the study of the work function changes induced by the hydrogen and nitrogen chemisorption enabled to draw several conclusions on the surface topography of the used films.


Author(s):  
Shuo Zhang ◽  
Shuo Shi ◽  
Tianming Feng ◽  
Xuemai Gu

AbstractAt present, unmanned aerial vehicles (UAVs) have been widely used in communication systems, and the fifth-generation wireless system (5G) has further promoted the vigorous development of them. The trajectory planning of UAV is an important factor that affects the timeliness and completion of missions, especially in scenarios such as emergency communications and post-disaster rescue. In this paper, we consider an emergency communication network where a UAV aims to achieve complete coverage of potential underlaying device-to-device (D2D) users. Trajectory planning issues are grouped into clustering and supplementary phases for optimization. Aiming at trajectory length and sum throughput, two trajectory planning algorithms based on K-means are proposed, respectively. In addition, in order to balance sum throughput with trajectory length, we present a joint evaluation index. Then relying on this index, a third trajectory optimization algorithm is further proposed. Simulation results show the validity of the proposed algorithms which have advantages over the well-known benchmark scheme in terms of trajectory length and sum throughput.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Martin Jenssen ◽  
Stefan Nickel ◽  
Winfried Schröder

Abstract Background Atmospheric deposition of nitrogen and climate change can have impacts on ecological structures and functions, and thus on the integrity of ecosystems and their services. Operationalization of ecosystem integrity is still an important desideratum. Results A methodology for classifying the ecosystem integrity of forests in Germany under the influence of climate change and atmospheric nitrogen deposition is presented. The methodology was based on 14 indicators for six ecosystem functions: habitat function, net primary function, carbon sequestration, nutrient and water flux, resilience. It allows assessments of ecosystem integrity changes by comparing current or prospective ecosystem states with ecosystem-type-specific reference states as described by quantitative indicators for 61 forest ecosystem types based on data before 1990. Conclusion The method developed enables site-specific classifications of ecosystem integrity as well as classifications with complete coverage and determinations of temporal trends as shown using examples from the Thuringian Forest and the “Kellerwald-Edersee” National Park (Germany).


Author(s):  
E. Gonzalez ◽  
O. Alvarez ◽  
Y. Diaz ◽  
C. Parra ◽  
C. Bustacara
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document