scholarly journals Synthesizing transformations on hierarchically structured data

Author(s):  
Navid Yaghmazadeh ◽  
Christian Klinger ◽  
Isil Dillig ◽  
Swarat Chaudhuri
Keyword(s):  
1994 ◽  
Vol 33 (05) ◽  
pp. 454-463 ◽  
Author(s):  
A. M. van Ginneken ◽  
J. van der Lei ◽  
J. H. van Bemmel ◽  
P. W. Moorman

Abstract:Clinical narratives in patient records are usually recorded in free text, limiting the use of this information for research, quality assessment, and decision support. This study focuses on the capture of clinical narratives in a structured format by supporting physicians with structured data entry (SDE). We analyzed and made explicit which requirements SDE should meet to be acceptable for the physician on the one hand, and generate unambiguous patient data on the other. Starting from these requirements, we found that in order to support SDE, the knowledge on which it is based needs to be made explicit: we refer to this knowledge as descriptional knowledge. We articulate the nature of this knowledge, and propose a model in which it can be formally represented. The model allows the construction of specific knowledge bases, each representing the knowledge needed to support SDE within a circumscribed domain. Data entry is made possible through a general entry program, of which the behavior is determined by a combination of user input and the content of the applicable domain knowledge base. We clarify how descriptional knowledge is represented, modeled, and used for data entry to achieve SDE, which meets the proposed requirements.


1992 ◽  
Vol 31 (04) ◽  
pp. 268-274 ◽  
Author(s):  
W. Gaus ◽  
J. G. Wechsler ◽  
P. Janowitz ◽  
J. Tudyka ◽  
W. Kratzer ◽  
...  

Abstract:A system using structured reporting of findings was developed for the preparation of medical reports and for clinical documentation purposes in upper abdominal sonography, and evaluated in the course of routine use. The evaluation focussed on the following parameters: completeness and correctness of the entered data, the proportion of free text, the validity and objectivity of the documentation, user acceptance, and time required. The completeness in the case of two clinically relevant parameters could be compared with an already existing database containing freely dictated reports. The results confirmed the hypothesis that, for the description of results of a technical examination, structured data reporting is a viable alternative to free-text dictation. For the application evaluated, there is even evidence of the superiority of a structured approach. The system can be put to use in related areas of application.


1996 ◽  
Vol 35 (03) ◽  
pp. 261-264 ◽  
Author(s):  
T. Schromm ◽  
T. Frankewitsch ◽  
M. Giehl ◽  
F. Keller ◽  
D. Zellner

Abstract:A pharmacokinetic database was constructed that is as free of errors as possible. Pharmacokinetic parameters were derived from the literature using a text-processing system and a database system. A random data sample from each system was compared with the original literature. The estimated error frequencies using statistical methods differed significantly between the two systems. The estimated error frequency in the text-processing system was 7.2%, that in the database system 2.7%. Compared with the original values in the literature, the estimated probability of error for identical pharmacokinetic parameters recorded in both systems is 2.4% and is not significantly different from the error frequency in the database. Parallel data entry with a text-processing system and a database system is, therefore, not significantly better than structured data entry for reducing the error frequency.


2018 ◽  
Vol 6 (10) ◽  
pp. 396-404
Author(s):  
Prakash Narayan Hardaha ◽  
Shailendra Singh
Keyword(s):  

2020 ◽  
Author(s):  
Mohammad Alarifi ◽  
Somaieh Goudarzvand3 ◽  
Abdulrahman Jabour ◽  
Doreen Foy ◽  
Maryam Zolnoori

BACKGROUND The rate of antidepressant prescriptions is globally increasing. A large portion of patients stop their medications which could lead to many side effects including relapse, and anxiety. OBJECTIVE The aim of this was to develop a drug-continuity prediction model and identify the factors associated with drug-continuity using online patient forums. METHODS We retrieved 982 antidepressant drug reviews from the online patient’s forum AskaPatient.com. We followed the Analytical Framework Method to extract structured data from unstructured data. Using the structured data, we examined the factors associated with antidepressant discontinuity and developed a predictive model using multiple machine learning techniques. RESULTS We tested multiple machine learning techniques which resulted in different performances ranging from accuracy of 65% to 82%. We found that Radom Forest algorithm provides the highest prediction method with 82% Accuracy, 78% Precision, 88.03% Recall, and 84.2% F1-Score. The factors associated with drug discontinuity the most were; withdrawal symptoms, effectiveness-ineffectiveness, perceived-distress-adverse drug reaction, rating, and perceived-distress related to withdrawal symptoms. CONCLUSIONS Although the nature of data available at online forums differ from data collected through surveys, we found that online patients forum can be a valuable source of data for drug-continuity prediction and understanding patients experience. The factors identified through our techniques were consistent with the findings of prior studies that used surveys.


Sign in / Sign up

Export Citation Format

Share Document