Real-time Travel Time Estimation with Sparse Reliable Surveillance Information

Author(s):  
Wen Zhang ◽  
Yang Wang ◽  
Xike Xie ◽  
Chuancai Ge ◽  
Hengchang Liu
2010 ◽  
Vol 14 (2) ◽  
pp. 54-67 ◽  
Author(s):  
Xuegang Jeff Ban ◽  
Yuwei Li ◽  
Alexander Skabardonis ◽  
J. D. Margulici

2012 ◽  
Vol 39 (10) ◽  
pp. 1113-1124 ◽  
Author(s):  
Tian-dong Xu ◽  
Yuan Hao ◽  
Zhong-ren Peng ◽  
Li-jun Sun

Providing reliable real-time travel time information is a critical challenge to all existing traffic routing systems. This study develops a new model for estimating and predicting real-time traffic conditions and travel times for variable message signs-based route guidance system. The proposed model is based on real-time limited detected traffic data, stochastic nonlinear macroscopic traffic flow model, and adaptive Kalman filtering theory. The method has the following main features: (1) real-time estimation and prediction of traffic conditions on a network level using limited traffic detectors, (2) travel time prediction in free flow and congested flow, and (3) prediction of drivers’ en-route diversion behavior. Field testing is conducted based on the Route Guidance Pilot Project sponsored by the National Science and Technology Ministry of China. The achieved testing results are satisfactory and have potential use for future works and field applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Fengjie Fu ◽  
Dongfang Ma ◽  
Dianhai Wang ◽  
Wei Qian

The dynamic change of urban road travel time was analyzed using video image detector data, and it showed cyclic variation, so the signal cycle length at the upstream intersection was conducted as the basic unit of time window; there was some evidence of bimodality in the actual travel time distributions; therefore, the fitting parameters of the travel time bimodal distribution were estimated using the EM algorithm. Then the weighted average value of the two means was indicated as the travel time estimation value, and the Modified Buffer Time Index (MBIT) was expressed as travel time variability; based on the characteristics of travel time change and MBIT along with different time windows, the time window was optimized dynamically for minimum MBIT, requiring that the travel time change be lower than the threshold value and traffic incidents can be detected real time; finally, travel times on Shandong Road in Qingdao were estimated every 10 s, 120 s, optimal time windows, and 480 s and the comparisons demonstrated that travel time estimation in optimal time windows can exactly and steadily reflect the real-time traffic. It verifies the effectiveness of the optimization method.


Sign in / Sign up

Export Citation Format

Share Document