Betalogger: Smartphone Sensor-based Side-channel Attack Detection and Text Inference Using Language Modeling and Dense MultiLayer Neural Network

Author(s):  
Abdul Rehman Javed ◽  
Saif Ur Rehman ◽  
Mohib Ullah Khan ◽  
Mamoun Alazab ◽  
Habib Ullah Khan

With the recent advancement of smartphone technology in the past few years, smartphone usage has increased on a tremendous scale due to its portability and ability to perform many daily life tasks. As a result, smartphones have become one of the most valuable targets for hackers to perform cyberattacks, since the smartphone can contain individuals’ sensitive data. Smartphones are embedded with highly accurate sensors. This article proposes BetaLogger , an Android-based application that highlights the issue of leaking smartphone users’ privacy using smartphone hardware sensors (accelerometer, magnetometer, and gyroscope). BetaLogger efficiently infers the typed text (long or short) on a smartphone keyboard using Language Modeling and a Dense Multi-layer Neural Network (DMNN). BetaLogger is composed of two major phases: In the first phase, Text Inference Vector is given as input to the DMNN model to predict the target labels comprising the alphabet, and in the second phase, sequence generator module generate the output sequence in the shape of a continuous sentence. The outcomes demonstrate that BetaLogger generates highly accurate short and long sentences, and it effectively enhances the inference rate in comparison with conventional machine learning algorithms and state-of-the-art studies.

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8467
Author(s):  
Mahmoud Elsisi ◽  
Minh-Quang Tran

This paper introduces an integrated IoT architecture to handle the problem of cyber attacks based on a developed deep neural network (DNN) with a rectified linear unit in order to provide reliable and secure online monitoring for automated guided vehicles (AGVs). The developed IoT architecture based on a DNN introduces a new approach for the online monitoring of AGVs against cyber attacks with a cheap and easy implementation instead of the traditional cyber attack detection schemes in the literature. The proposed DNN is trained based on experimental AGV data that represent the real state of the AGV and different types of cyber attacks including a random attack, ramp attack, pulse attack, and sinusoidal attack that is injected by the attacker into the internet network. The proposed DNN is compared with different deep learning and machine learning algorithms such as a one dimension convolutional neural network (1D-CNN), a supported vector machine model (SVM), random forest, extreme gradient boosting (XGBoost), and a decision tree for greater validation. Furthermore, the proposed IoT architecture based on a DNN can provide an effective detection for the AGV status with an excellent accuracy of 96.77% that is significantly greater than the accuracy based on the traditional schemes. The AGV status based on the proposed IoT architecture with a DNN is visualized by an advanced IoT platform named CONTACT Elements for IoT. Different test scenarios with a practical setup of an AGV with IoT are carried out to emphasize the performance of the suggested IoT architecture based on a DNN. The results approve the usefulness of the proposed IoT to provide effective cybersecurity for data visualization and tracking of the AGV status that enhances decision-making and improves industrial productivity.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Zeynep Hilal Kilimci ◽  
Aykut Güven ◽  
Mitat Uysal ◽  
Selim Akyokus

Nowadays, smart devices as a part of daily life collect data about their users with the help of sensors placed on them. Sensor data are usually physical data but mobile applications collect more than physical data like device usage habits and personal interests. Collected data are usually classified as personal, but they contain valuable information about their users when it is analyzed and interpreted. One of the main purposes of personal data analysis is to make predictions about users. Collected data can be divided into two major categories: physical and behavioral data. Behavioral data are also named as neurophysical data. Physical and neurophysical parameters are collected as a part of this study. Physical data contains measurements of the users like heartbeats, sleep quality, energy, movement/mobility parameters. Neurophysical data contain keystroke patterns like typing speed and typing errors. Users’ emotional/mood statuses are also investigated by asking daily questions. Six questions are asked to the users daily in order to determine the mood of them. These questions are emotion-attached questions, and depending on the answers, users’ emotional states are graded. Our aim is to show that there is a connection between users’ physical/neurophysical parameters and mood/emotional conditions. To prove our hypothesis, we collect and measure physical and neurophysical parameters of 15 users for 1 year. The novelty of this work to the literature is the usage of both combinations of physical and neurophysical parameters. Another novelty is that the emotion classification task is performed by both conventional machine learning algorithms and deep learning models. For this purpose, Feedforward Neural Network (FFNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) neural network are employed as deep learning methodologies. Multinomial Naïve Bayes (MNB), Support Vector Regression (SVR), Decision Tree (DT), Random Forest (RF), and Decision Integration Strategy (DIS) are evaluated as conventional machine learning algorithms. To the best of our knowledge, this is the very first attempt to analyze the neurophysical conditions of the users by evaluating deep learning models for mood analysis and enriching physical characteristics with neurophysical parameters. Experiment results demonstrate that the utilization of deep learning methodologies and the combination of both physical and neurophysical parameters enhances the classification success of the system to interpret the mood of the users. A wide range of comparative and extensive experiments shows that the proposed model exhibits noteworthy results compared to the state-of-art studies.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4583 ◽  
Author(s):  
Vibekananda Dutta ◽  
Michał Choraś ◽  
Marek Pawlicki ◽  
Rafał Kozik

Currently, expert systems and applied machine learning algorithms are widely used to automate network intrusion detection. In critical infrastructure applications of communication technologies, the interaction among various industrial control systems and the Internet environment intrinsic to the IoT technology makes them susceptible to cyber-attacks. Given the existence of the enormous network traffic in critical Cyber-Physical Systems (CPSs), traditional methods of machine learning implemented in network anomaly detection are inefficient. Therefore, recently developed machine learning techniques, with the emphasis on deep learning, are finding their successful implementations in the detection and classification of anomalies at both the network and host levels. This paper presents an ensemble method that leverages deep models such as the Deep Neural Network (DNN) and Long Short-Term Memory (LSTM) and a meta-classifier (i.e., logistic regression) following the principle of stacked generalization. To enhance the capabilities of the proposed approach, the method utilizes a two-step process for the apprehension of network anomalies. In the first stage, data pre-processing, a Deep Sparse AutoEncoder (DSAE) is employed for the feature engineering problem. In the second phase, a stacking ensemble learning approach is utilized for classification. The efficiency of the method disclosed in this work is tested on heterogeneous datasets, including data gathered in the IoT environment, namely IoT-23, LITNET-2020, and NetML-2020. The results of the evaluation of the proposed approach are discussed. Statistical significance is tested and compared to the state-of-the-art approaches in network anomaly detection.


2021 ◽  
Vol 11 (1) ◽  
pp. 89-100
Author(s):  
Cucu Ika Agustyaningrum ◽  
Muhammad Haris ◽  
Riska Aryanti ◽  
Titik Misriati

The use of e-commerce throughout the world in recent years is very rapid. The continuous increase in sales shows that e-commerce has huge market potential. Store profits are derived from the process of assessing data to identify and classify online shopper intentions. The process of assessing the data uses conventional machine learning algorithms and deep neural networks. Comparison of algorithms in this study using the python programming language by knowing the value of Accuracy, F1-Score, Precision, Recall, and ROC AUC. The test results show that the accuracy of the deep neural network algorithm is 98.48%, the F1 score is 95.06%, precision is 97.36%, recall is 96.81% and AUC is 96.81%. So, based on this research, deep neural network data mining techniques can be an effective algorithm for online shopper intention data sets with cross-validation folds of 10, six hidden layer decoder-encoder variations, relu-sigmoid activation function, adagrad optimizer, and learning rate of 0.01 and no dropout. The value of this deep neural network algorithm is quite dominant compared to conventional machine learning algorithms and related research.


2020 ◽  
pp. 1-11
Author(s):  
Wenjuan Ma ◽  
Xuesi Zhao ◽  
Yuxiu Guo

The application of artificial intelligence and machine learning algorithms in education reform is an inevitable trend of teaching development. In order to improve the teaching intelligence, this paper builds an auxiliary teaching system based on computer artificial intelligence and neural network based on the traditional teaching model. Moreover, in this paper, the optimization strategy is adopted in the TLBO algorithm to reduce the running time of the algorithm, and the extracurricular learning mechanism is introduced to increase the adjustable parameters, which is conducive to the algorithm jumping out of the local optimum. In addition, in this paper, the crowding factor in the fish school algorithm is used to define the degree or restraint of teachers’ control over students. At the same time, students in the crowded range gather near the teacher, and some students who are difficult to restrain perform the following behavior to follow the top students. Finally, this study builds a model based on actual needs, and designs a control experiment to verify the system performance. The results show that the system constructed in this paper has good performance and can provide a theoretical reference for related research.


Author(s):  
Varun Sapra ◽  
M.L Saini ◽  
Luxmi Verma

Background: Cardiovascular diseases are increasing at an alarming rate with very high rate of mortality. Coronary artery disease is one of the type of cardiovascular disease, which is not easily diagnosed in its early stage. Prevention of Coronary Artery Disease is possible only if it is diagnosed, at early stage and proper medication is done. Objective: An effective diagnosis model is important not only for the early diagnosis but also to check the severity of the disease. Method: In this paper, a hybrid approach is followed, with the integration of deep learning (multi-layer perceptron) with Case based reasoning to design analytical framework. This paper suggests two phases of the study, one in which the patient is diagnosed for Coronary artery disease and in second phase, if the patient is suffering from the disease then employing Case based reasoning to diagnose the severity of the disease. In the first phase, multilayer perceptron is implemented on reduced dataset and with time-based learning for stochastic gradient descent respectively. Results: The classification accuracy is increase by 4.18 % with reduced data set using deep neural network with time based learning. In second phase, if the patient is diagnosed as positive for Coronary artery disease, then it triggers the Case based reasoning system to retrieve from the case base, the most similar case to predict the severity for that patient. The CBR model achieved 97.3% accuracy. Conclusion: The model can be very useful for medical practitioners as a supporting decision system and thus can save the patients from unnecessary medical expenses on costly tests and can improve the quality and effectiveness of medical treatment.


2021 ◽  
Vol 11 (4) ◽  
pp. 1829
Author(s):  
Davide Grande ◽  
Catherine A. Harris ◽  
Giles Thomas ◽  
Enrico Anderlini

Recurrent Neural Networks (RNNs) are increasingly being used for model identification, forecasting and control. When identifying physical models with unknown mathematical knowledge of the system, Nonlinear AutoRegressive models with eXogenous inputs (NARX) or Nonlinear AutoRegressive Moving-Average models with eXogenous inputs (NARMAX) methods are typically used. In the context of data-driven control, machine learning algorithms are proven to have comparable performances to advanced control techniques, but lack the properties of the traditional stability theory. This paper illustrates a method to prove a posteriori the stability of a generic neural network, showing its application to the state-of-the-art RNN architecture. The presented method relies on identifying the poles associated with the network designed starting from the input/output data. Providing a framework to guarantee the stability of any neural network architecture combined with the generalisability properties and applicability to different fields can significantly broaden their use in dynamic systems modelling and control.


2021 ◽  
Vol 11 (15) ◽  
pp. 7088
Author(s):  
Ke Yang ◽  
Yongjian Wang ◽  
Shidong Fan ◽  
Ali Mosleh

Spare parts management is a critical issue in the industrial field, alongside planning maintenance and logistics activities. For accurate classification in particular, the decision-makers can determine the optimal inventory management strategy. However, problems such as criteria selection, rules explanatory, and learning ability arise when managing thousands of spare parts for modern industry. This paper presents a deep convolutional neural network based on graph (G-DCNN) which will realize multi-criteria classification through image identification based on an explainable hierarchical structure. In the first phase, a hierarchical classification structure is established according to the causal relationship of multiple criteria; in the second phase, nodes are colored according to their criteria level status so that the traditional numerical information can be visible through graph style; in the third phase, the colored structures are transferred into images and processed by structure-modified convolutional neural network, to complete the classification. Finally, the proposed method is applied in a real-world case study to validate its effectiveness, feasibility, and generality. This classification study supplies a good decision support to improve the monitor-focus on critical component and control inventory which will benefit the collaborative maintenance.


Sign in / Sign up

Export Citation Format

Share Document