Hybrid Variational Autoencoder for Recommender Systems

2022 ◽  
Vol 16 (2) ◽  
pp. 1-37
Author(s):  
Hangbin Zhang ◽  
Raymond K. Wong ◽  
Victor W. Chu

E-commerce platforms heavily rely on automatic personalized recommender systems, e.g., collaborative filtering models, to improve customer experience. Some hybrid models have been proposed recently to address the deficiency of existing models. However, their performances drop significantly when the dataset is sparse. Most of the recent works failed to fully address this shortcoming. At most, some of them only tried to alleviate the problem by considering either user side or item side content information. In this article, we propose a novel recommender model called Hybrid Variational Autoencoder (HVAE) to improve the performance on sparse datasets. Different from the existing approaches, we encode both user and item information into a latent space for semantic relevance measurement. In parallel, we utilize collaborative filtering to find the implicit factors of users and items, and combine their outputs to deliver a hybrid solution. In addition, we compare the performance of Gaussian distribution and multinomial distribution in learning the representations of the textual data. Our experiment results show that HVAE is able to significantly outperform state-of-the-art models with robust performance.

2020 ◽  
Vol 10 (7) ◽  
pp. 2441 ◽  
Author(s):  
Jesus Bobadilla ◽  
Santiago Alonso ◽  
Antonio Hernando

This paper provides an innovative deep learning architecture to improve collaborative filtering results in recommender systems. It exploits the potential of the reliability concept to raise predictions and recommendations quality by incorporating prediction errors (reliabilities) in the deep learning layers. The underlying idea is to recommend highly predicted items that also have been found as reliable ones. We use the deep learning architecture to extract the existing non-linear relations between predictions, reliabilities, and accurate recommendations. The proposed architecture consists of three related stages, providing three stacked abstraction levels: (a) real prediction errors, (b) predicted errors (reliabilities), and (c) predicted ratings (predictions). In turn, each abstraction level requires a learning process: (a) Matrix Factorization from ratings, (b) Multilayer Neural Network fed with real prediction errors and hidden factors, and (c) Multilayer Neural Network fed with reliabilities and hidden factors. A complete set of experiments has been run involving three representative and open datasets and a state-of-the-art baseline. The results show strong prediction improvements and also important recommendation improvements, particularly for the recall quality measure.


Author(s):  
Faiz Maazouzi ◽  
Hafed Zarzour ◽  
Yaser Jararweh

With the enormous amount of information circulating on the Web, it is becoming increasingly difficult to find the necessary and useful information quickly and efficiently. However, with the emergence of recommender systems in the 1990s, reducing information overload became easy. In the last few years, many recommender systems employ the collaborative filtering technology, which has been proven to be one of the most successful techniques in recommender systems. Nowadays, the latest generation of collaborative filtering methods still requires further improvements to make the recommendations more efficient and accurate. Therefore, the objective of this article is to propose a new effective recommender system for TED talks that first groups users according to their preferences, and then provides a powerful mechanism to improve the quality of recommendations for users. In this context, the authors used the Pearson Correlation Coefficient (PCC) method and TED talks to create the TED user-user matrix. Then, they used the k-means clustering method to group the same users in clusters and create a predictive model. Finally, they used this model to make relevant recommendations to other users. The experimental results on real dataset show that their approach significantly outperforms the state-of-the-art methods in terms of RMSE, precision, recall, and F1 scores.


2009 ◽  
Vol 2009 ◽  
pp. 1-19 ◽  
Author(s):  
Xiaoyuan Su ◽  
Taghi M. Khoshgoftaar

As one of the most successful approaches to building recommender systems, collaborative filtering (CF) uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. In this paper, we first introduce CF tasks and their main challenges, such as data sparsity, scalability, synonymy, gray sheep, shilling attacks, privacy protection, etc., and their possible solutions. We then present three main categories of CF techniques: memory-based, model-based, and hybrid CF algorithms (that combine CF with other recommendation techniques), with examples for representative algorithms of each category, and analysis of their predictive performance and their ability to address the challenges. From basic techniques to the state-of-the-art, we attempt to present a comprehensive survey for CF techniques, which can be served as a roadmap for research and practice in this area.


2011 ◽  
Vol 2011 ◽  
pp. 1-19
Author(s):  
Armelle Brun ◽  
Sylvain Castagnos ◽  
Anne Boyer

The number of items that users can now access when navigating on the Web is so huge that these might feel lost. Recommender systems are a way to cope with this profusion of data by suggesting items that fit the users needs. One of the most popular techniques for recommender systems is the collaborative filtering approach that relies on the preferences of items expressed by users, usually under the form of ratings. In the absence of ratings, classical collaborative filtering techniques cannot be applied. Fortunately, the behavior of users, such as their consultations, can be collected. In this paper, we present a new approach to perform collaborative filtering when no rating is available but when user consultations are known. We propose to take inspiration from local community detection algorithms to form communities of users and deduce the set of mentors of a given user. We adapt one state-of-the-art algorithm so as to fit the characteristics of collaborative filtering. Experiments conducted show that the precision achieved is higher then the baseline that does not perform any mentor selection. In addition, our model almost offsets the absence of ratings by exploiting a reduced set of mentors.


Author(s):  
Guibing Guo ◽  
Enneng Yang ◽  
Li Shen ◽  
Xiaochun Yang ◽  
Xiaodong He

Trust-aware recommender systems have received much attention recently for their abilities to capture the influence among connected users. However, they suffer from the efficiency issue due to large amount of data and time-consuming real-valued operations. Although existing discrete collaborative filtering may alleviate this issue to some extent, it is unable to accommodate social influence. In this paper we propose a discrete trust-aware matrix factorization (DTMF) model to take dual advantages of both social relations and discrete technique for fast recommendation. Specifically, we map the latent representation of users and items into a joint hamming space by recovering the rating and trust interactions between users and items. We adopt a sophisticated discrete coordinate descent (DCD) approach to optimize our proposed model. In addition, experiments on two real-world datasets demonstrate the superiority of our approach against other state-of-the-art approaches in terms of ranking accuracy and efficiency.


2021 ◽  
Author(s):  
Benson Chen ◽  
Xiang Fu ◽  
Regina Barzilay ◽  
Tommi Jaakkola

Searching for novel molecular compounds with desired properties is an important problem in drug discovery. Many existing frameworks generate molecules one atom at a time. We instead propose a flexible editing paradigm that generates molecules using learned molecular fragments---meaningful substructures of molecules. To do so, we train a variational autoencoder (VAE) to encode molecular fragments in a coherent latent space, which we then utilize as a vocabulary for editing molecules to explore the complex chemical property space. Equipped with the learned fragment vocabulary, we propose Fragment-based Sequential Translation (FaST), which learns a reinforcement learning (RL) policy to iteratively translate model-discovered molecules into increasingly novel molecules while satisfying desired properties. Empirical evaluation shows that FaST significantly improves over state-of-the-art methods on benchmark single/multi-objective molecular optimization tasks.


Author(s):  
Bidisha Samanta ◽  
Sharmila Reddy ◽  
Hussain Jagirdar ◽  
Niloy Ganguly ◽  
Soumen Chakrabarti

Code-switching, the interleaving of two or more languages within a sentence or discourse is pervasive in multilingual societies. Accurate language models for code-switched text are critical for NLP tasks. State-of-the-art data-intensive neural language models are difficult to train well from scarce language-labeled code-switched text. A potential solution is to use deep generative models to synthesize large volumes of realistic code-switched text. Although generative adversarial networks and variational autoencoders can synthesize plausible monolingual text from continuous latent space, they cannot adequately address code-switched text, owing to their informal style and complex interplay between the constituent languages. We introduce VACS, a novel variational autoencoder architecture specifically tailored to code-switching phenomena. VACS encodes to and decodes from a two-level hierarchical representation, which models syntactic contextual signals in the lower level, and language switching signals in the upper layer. Sampling representations from the prior and decoding them produced well-formed, diverse code-switched sentences. Extensive experiments show that using synthetic code-switched text with natural monolingual data results in significant (33.06\%) drop in perplexity.


Author(s):  
Laurent Candillier ◽  
Kris Jack ◽  
Françoise Fessant ◽  
Frank Meyer

The aim of Recommender Systems is to help users to find items that they should appreciate from huge catalogues. In that field, collaborative filtering approaches can be distinguished from content-based ones. The former is based on a set of user ratings on items, while the latter uses item content descriptions and user thematic profiles. While collaborative filtering systems often result in better predictive performance, content-based filtering offers solutions to the limitations of collaborative filtering, as well as a natural way to interact with users. These complementary approaches thus motivate the design of hybrid systems. In this chapter, the main algorithmic methods used for recommender systems are presented in a state of the art. The evaluation of recommender systems is currently an important issue. The authors focus on two kinds of evaluations. The first one concerns the performance accuracy: several approaches are compared through experiments on two real movies rating datasets MovieLens and Netflix. The second concerns user satisfaction and for this a hybrid system is implemented and tested with real users.


Author(s):  
Dazhong Shen ◽  
Chuan Qin ◽  
Chao Wang ◽  
Hengshu Zhu ◽  
Enhong Chen ◽  
...  

As one of the most popular generative models, Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference. However, when the decoder network is sufficiently expressive, VAE may lead to posterior collapse; that is, uninformative latent representations may be learned. To this end, in this paper, we propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space, and thus the representation can be learned in a meaningful and compact manner. Specifically, we first theoretically demonstrate that it will result in better latent space with high diversity and low uncertainty awareness by controlling the distribution of posterior’s parameters across the whole data accordingly. Then, without the introduction of new loss terms or modifying training strategies, we propose to exploit Dropout on the variances and Batch-Normalization on the means simultaneously to regularize their distributions implicitly. Furthermore, to evaluate the generalization effect, we also exploit DU-VAE for inverse autoregressive flow based-VAE (VAE-IAF) empirically. Finally, extensive experiments on three benchmark datasets clearly show that our approach can outperform state-of-the-art baselines on both likelihood estimation and underlying classification tasks.


Author(s):  
Lediona Nishani ◽  
Marenglen Biba

People nowadays base their behavior by making choices through word of mouth, media, public opinion, surveys, etc. One of the most prominent techniques of recommender systems is Collaborative filtering (CF), which utilizes the known preferences of several users to develop recommendation for other users. CF can introduce limitations like new-item problem, new-user problem or data sparsity, which can be mitigated by employing Statistical Relational Learning (SRLs). This review chapter presents a comprehensive scientific survey from the basic and traditional techniques to the-state-of-the-art of SRL algorithms implemented for collaborative filtering issues. Authors provide a comprehensive review of SRL for CF tasks and demonstrate strong evidence that SRL can be successfully implemented in the recommender systems domain. Finally, the chapter is concluded with a summarization of the key issues that SRLs tackle in the collaborative filtering area and suggest further open issues in order to advance in this field of research.


Sign in / Sign up

Export Citation Format

Share Document